Skip to main content

Microscopic and Mezoscopic Models for Mass Distributions

  • Chapter
Stochastic Dynamics
  • 925 Accesses

Abstract

In this paper we extend the derivation of mezoscopic partial differential equations (or stochastic partial differential equations (SPDE’s)) from particle systems with finite conserved mass to infinite conserved mass. We also sketch the history of stochastic and deterministic (i.e., mezoscopic and macroscopic) reaction-diffusion models initiated by Arnold’s work as well as some results of Dawson’s measure processes approach to SPDE’s. At the end of the paper we show how to include creation and annihilation through a fractional step method into the mezoscopic PDE’s.

This contribution is dedicated to Professor Ludwig Arnold on the occasion of his 60th birthday. It was supported by NSF grants DMS-9703648 and DMS-9414153.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8 References

  1. Arnold, L. (1973): Stochastische Differentialgleichungen-Theorie und Anwendungen. R. Oldenburg, München-Wien (English translation: Stochastic differential equations and applications, Wiley).

    Google Scholar 

  2. Arnold, L. (1981): Mathematical models of chemical reactions. In: Stochastic Systems, (M. Hazewinkel and J. Willems, eds.) Reidel, Dordrecht.

    Google Scholar 

  3. Arnold, L. and Theodosopulu, M. (1980): Deterministic limit of the stochastic model of chemical reaction with diffusion. Adv. Appl. Probab. 12 367–379.

    Article  MATH  MathSciNet  Google Scholar 

  4. Blount, D.J. (1991): Comparison of stochastic and deterministic models of a linear chemical reaction with diffusion, Ann. Probab. 19 1440–1462.

    MATH  MathSciNet  Google Scholar 

  5. Blount, D.J. (1994): Density dependent limits for a nonlinear reaction diffusion model. Ann. Probab. 22, 2040–2070.

    MATH  MathSciNet  Google Scholar 

  6. Blount, D. (1996): Diffusion limits for a nonlinear density dependent space-time population model. Ann. Probab., Vol. 24,No. 2, 639–659.

    Article  MATH  MathSciNet  Google Scholar 

  7. Boldrighini, C, De Masi, A., Pellegrinotti, A. and Presutti, E.: Collective Phenomena in Interacting Particle Systems, Stochastic Process. Appl. 25 (1987) 137–152.

    Article  MATH  MathSciNet  Google Scholar 

  8. Coddington, E.A., Levinson, N. (1955): Theory of ordinary differential equations. McGraw-Hill, New York-Toronto-London.

    MATH  Google Scholar 

  9. Da Prato, G., Zabzyk, J. (1992): Stochastic equations in infinite dimensions. Cambridge University Pres, Cambridge.

    MATH  Google Scholar 

  10. Dawson, D.A. (1975): Stochastic evolution equations and related measure processes. J. Multivariate Analysis, 5, 1–52.

    Article  Google Scholar 

  11. Dawson, D.A. (1992): Private communication.

    Google Scholar 

  12. Dawson, D.A. (1993): Measure valued Markov processes. Ecole d’Eté de Probabilités de Saint-Flour XX. Lecture Notes in Math. 1541, Springer, Berlin, 1–260.

    Chapter  Google Scholar 

  13. Dawson, D.A. Vaillancourt, J. (1995): Stochastic McKean-Vlasov equations. No. DEA 2. 199–229.

    MathSciNet  Google Scholar 

  14. De Acosta, A. (1982): Invariance principles in probability for triangular arrays of B-valued random vectors and some applications. Ann. Probab., No. 2, 346–373.

    Google Scholar 

  15. Dudley, R.M. (1989): Real analysis and probability. Wadsworth and Brooks, Belmont, California.

    MATH  Google Scholar 

  16. Friedman, A. (1976): Stochastic differential equations and applications. Vol. 2, Academic Press. New York-San Francisco-London.

    MATH  Google Scholar 

  17. Gärtner, J. (1988): On the McKean-Vlasov limit for interacting diffusions. Math. Nachr. 137, 197–248.

    Article  MATH  MathSciNet  Google Scholar 

  18. Giacomin, G., Lebowitz, J.L. (1997): Phase segregation dynamics in particle systems with long range interactions I: Macroscopic limits. (Preprint)

    Google Scholar 

  19. Goncharuk, N., Kotelenez, P. (1996): Fractional step method for stochastic evolution equations. Stochastic Proc. Appl. 73, 1–45.

    Article  MathSciNet  Google Scholar 

  20. Ikeda, N., Watanabe, S. (1981): Stochastic differential equations and diffusion processes. North Holland Publishing Company. Amsterdam-New York.

    MATH  Google Scholar 

  21. Il’in, A.M., Khasminskii, R.Z. (1964): On equations of Brownian motion. Probab. Th. and Appl., Vol. IX,No. 3, (in Russian).

    Google Scholar 

  22. Konno, N., Shiga, T. (1988): Stochastic partial differential equations for some measure-valued diffusions. Probab. Theory Related Fields 79, 201–225.

    Article  MATH  MathSciNet  Google Scholar 

  23. Kotelenez, P. (1982): Ph.D. Thesis, Bremen.

    Google Scholar 

  24. Kotelenez, P. (1985): On the semigroup approach to stochastic evolution equations. In: Stochastic Space-Time Models and Limit Theorems (L. Arnold and P. Kotelenez, eds.) 95–139. Reidel, Dordrecht.

    Google Scholar 

  25. Kotelenez, P. (1986): Law of large numbers and central limit theorem for linear chemical reactions with diffusion. Ann. Prob. 14, 173–193.

    MATH  MathSciNet  Google Scholar 

  26. Kotelenez, P. (1988): High density limit theorems for nonlinear chemical reactions with diffusion. Probab. Theory Related Fields 788, 11–37.

    Article  MathSciNet  Google Scholar 

  27. Kotelenez, P. (1992a): Fluctuations in a nonlinear reaction-diffusion model. Ann. Appl. Prob. Vol. 2,No. 3, 669–694.

    MATH  MathSciNet  Google Scholar 

  28. Kotelenez, P. (1992b): Existence, uniqueness and smoothness for a class of function valued stochastic partial differential equations. Stochastics Stochastic Rep. 41, 177–199.

    MATH  MathSciNet  Google Scholar 

  29. Kotelenez, P. (1992c): Comparison methods for a class of function valued stochastic partial differential equations. Probab. Theory Related Fields 93, 1–19.

    Article  MATH  MathSciNet  Google Scholar 

  30. Kotelenez, P. (1995a): A stochastic Navier-Stokes equation for the vorticity of a two-dimensional fluid. Ann. Appl. Probab. Vol. 5,No. 4, 1126–1160.

    MATH  MathSciNet  Google Scholar 

  31. Kotelenez, P. (1995b): A class of quasilinear stochastic partial differential equations of McKean-Vlasov type with mass conservation. Probab. Theory Relat. Fields 102, 159–188.

    Article  MATH  MathSciNet  Google Scholar 

  32. Kotelenez, P. (1995c): Particles, vortex dynamics and stochastic partial differential equations. In: Robert J. Adler et al., eds., Stochastic Modelling in Physical Oceanography. Birkhäuser, Boston, 271–294.

    Google Scholar 

  33. Kotelenez, P. (1996): Stochastic partial differential equations in the construction of random fields from particle systems. Part I: Mass conservation. Case Western Reserve University, Department of Mathematics. Preprint #96-143.

    Google Scholar 

  34. Kotelenez (1997): Smooth solutions of quasilinear stochastic partial differential equations of McKean-Vlasov type. (To appear: In “Skorohod’s Topology; Origin, Development and Applications”. Korolyuk and Portenko, N.I. (eds.) VPS (Netherlands).

    Google Scholar 

  35. Kotelenez, P.; Kurtz, T. (1998): Macroscopic limit for stochastic partial differential equations. (in preparation).

    Google Scholar 

  36. Kotelenez, P., Wang, K. (1994): Newtonian particle mechanics and stochastic partial differential equations. In D.A. Dawson (eds.) “Measure Valued Processes, Stochastic Partial Differential Equations and Interacting Systems”, Centre de Recherche Mathematiques, CRM Proceedings and Lecture Notes, Volume 5, 139–149.

    Google Scholar 

  37. Kurtz, T. (1971): Limit theorems for sequences of jump Markov processes approximating ordinary differential processes. J. Appl. Prob. 8, 344–356.

    Article  MATH  MathSciNet  Google Scholar 

  38. Kurtz, T. (1978): Strong approximation theorems for density dependent Markov chains. Stochastic Process, Appl. 6, 223–240.

    Article  MATH  MathSciNet  Google Scholar 

  39. Kurtz, T. (1981): Approximation of Population Processes. CBMSNSF Regional Conference series in Applied Mathematics 36, SIAM, Philadelphia.

    Google Scholar 

  40. Nelson, E. (1972): Dynamical theories of Brownian motion. Princeton University, Press, Princeton, N.J.

    Google Scholar 

  41. Oelschläger, K. (1989): On the derivation of reaction-diffusion equations as limit dynamics of systems of moderately interacting stochastic processes. Probab. Th. Rel. Fields, 565–586.

    Google Scholar 

  42. Vaillancourt, J. (1988): On the existence of random McKean-Vlasov limits for triangular arrays of exchangeable diffusions. Stochastic Anal. Appl. 6.

    Google Scholar 

  43. Walsh, J.B. (1986): An introduction to stochastic partial differential equations. Ecole d’Eté de Probabilités de Saint-Flour XIV. Lecture Notes in Math. 1180. Springer, Berlin.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Kotelenez, P. (1999). Microscopic and Mezoscopic Models for Mass Distributions. In: Stochastic Dynamics. Springer, New York, NY. https://doi.org/10.1007/0-387-22655-9_17

Download citation

  • DOI: https://doi.org/10.1007/0-387-22655-9_17

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98512-1

  • Online ISBN: 978-0-387-22655-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics