Skip to main content

The Lyapunov Exponent of the Euler Scheme for Stochastic Differential Equations

  • Chapter
Stochastic Dynamics

Abstract

In this paper we review some results about the approximation of the upper Lyapunov exponents λ of linear and nonlinear diffusion processes X. The stochastic differential system solved by X is discretized by the Euler scheme. Under appropriate assumptions, the upper Lyapunov exponent \( \bar \lambda \) of the resulting approximate process \( \bar X \) is well defined and can be efficiently computed by simulating one single trajectory of \( \bar X \) during a time long enough. We describe the mathematical technique which leads to estimates on the convergence rate of \( \bar \lambda \) to λ. We start by an elementary example, then we deal with linear systems, and finally we consider nonlinear systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7 References

  1. L. Arnold, E. Oeljeklaus, and E. Pardoux. Almost sure and moment stability for linear Itô equations. In L. Arnold and V. Wihstutz, editors, Lyapunov Exponents, volume 1186 of Lecture Notes in Mathematics. Springer, 1986.

    Google Scholar 

  2. L. Arnold and L. San Martin. A control problem related to the Lyapunov spectrum of stochastic flows. Matematica Aplic. Comp., 5(1):31–64, 1986.

    MATH  MathSciNet  Google Scholar 

  3. L. Arnold and V. Wihstutz, editors. Lyapunov Exponents, volume 1186 of Lecture Notes in Mathematics. Springer, 1986.

    Google Scholar 

  4. E.I. Auslender and G.N. Mil’shtein. Asymptotic expansion of the Lyapunov index for linear stochastic systems with small noise. Prikl. Matem. Mekhan, 46(3):358–365, 1982.

    MathSciNet  Google Scholar 

  5. V. Bally and D. Talay. The lawof the Euler scheme for stochastic differential equations (I): convergence rate of the distribution function. Probability Theory and Related Fields, 104(1), 1996.

    Google Scholar 

  6. V. Bally and D. Talay. The lawof the Euler scheme for stochastic differential equations (II): convergence rate of the density. Monte Carlo Methods and Applications, 2:93–128, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  7. P. Baxendale. The Lyapunov spectrum of a stochastic flowof diffeomorphisms. In L. Arnold and V. Wihstutz, editors, Lyapunov Exponents, volume 1186 of Lecture Notes in Mathematics. Springer, 1986.

    Google Scholar 

  8. P. Bougerol. Comparaison des exposants de Lyapounov des processus Markoviens multiplicatifs. An. Inst. H. Poincaré, 24(4):439–489, 1988.

    MATH  MathSciNet  Google Scholar 

  9. P. Bougerol. Théorèmes limites pour les systèmes linéaires à coefficients Markoviens. Prob. Th. Rel. Fields, 78:193–221, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  10. P. Bougerol and J. Lacroix. Products of Random Matrices with Applications to Schrödinger Operators. Birkhauser, 1985.

    Google Scholar 

  11. A. Carverhill. A formula for the Lyapunov numbers of a stochastic flow. Application to a perturbation problem. Stochastics, 14:209–226, 1985.

    MATH  MathSciNet  Google Scholar 

  12. J.L. Doob. Stochastic processes. J. Wiley and Sons, 1953.

    Google Scholar 

  13. A. Grorud and D. Talay. Approximation of Lyapunov exponents of nonlinear stochastic differential systems. SIAM J. Appl. Math., 56(2):627–650, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  14. N. Ikeda and S. Watanabe. Stochastic Differential Equations and Diffusion Processes (2nd Ed.). North Holland, 1989.

    Google Scholar 

  15. A. Leizarowitz. Exact results for the Lyapunov exponents of certain linear Ito systems. SIAM J. Appl. Math., 50(4):1156–1165, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  16. E. Pardoux and V. Wihstutz. Lyapunov exponent of linear stochastic systems with large diffusion term. SIAM J.Appl.Math., 48(2):442–457, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  17. P. Protter and D. Talay. The Euler scheme for Lévy driven stochastic differential equations. Ann. Probab., 25(1):393–423, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  18. D. Talay. Approximation of upper Lyapunov exponents of bilinear stochastic differential systems. SIAM Journal on Numerical Analysis, 28(4):1141–1164, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  19. D. Talay. Simulation and numerical analysis of stochastic differential systems: a review. In P. Krée and W. Wedig, editors, Probabilistic Methods in Applied Physics, volume 451 of Lecture Notes in Physics, chapter 3, pages 54–96. Springer-Verlag, 1995.

    Google Scholar 

  20. D. Talay. Probabilistic Models for Nonlinear Partial Differential Equations, chapter Probabilistic Numerical Methods for Partial Differential Equations: Elements of Analysis, D. Talay and L. Tubaro (Eds.), pages 148–196. Number 1627 in Lecture Notes in Mathematics. Springer-Verlag, 1996.

    Google Scholar 

  21. D. Talay and L. Tubaro. Expansion of the global error for numerical schemes solving stochastic differential equations. Stoch. Anal. Appl., 8(4):94–120, 1990.

    Article  MathSciNet  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Talay, D. (1999). The Lyapunov Exponent of the Euler Scheme for Stochastic Differential Equations. In: Stochastic Dynamics. Springer, New York, NY. https://doi.org/10.1007/0-387-22655-9_10

Download citation

  • DOI: https://doi.org/10.1007/0-387-22655-9_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98512-1

  • Online ISBN: 978-0-387-22655-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics