Contact Mechanics

Part of the Mechanical Engineering Series book series (MES)


Contact Pressure Plastic Zone Contact Mechanic Specimen Material Spherical Indenter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Hertz, “On the contact of elastic solids,” J. Reine Angew. Math. 92, 1881, pp. 156–171. Translated and reprinted in English in Hertz’s Miscellaneous Papers, Macmillan & Co., London, 1896, Ch. 5.Google Scholar
  2. 2.
    H. Hertz, “On hardness,” Verh. Ver. Beförderung Gewerbe Fleisses 61, 1882, p. 410. Translated and reprinted in English in Hertzs Miscellaneous Papers, Macmillan & Co, London, 1896, Ch. 6.Google Scholar
  3. 3.
    A.C. Fischer-Cripps, “The use of combined elastic modulus in the analysis of depth sensing indentation data,” J. Mater. Res., 1611, 2001, pp. 3050–3052.ADSCrossRefGoogle Scholar
  4. 4.
    I.N. Sneddon, “Boussinesq’s problem for a rigid cone,” Proc. Cambridge Philos. Soc. 44, 1948, pp. 492–507.zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    J.R. Barber and D.A. Billings, “An approximate solution for the contact area and elastic compliance of a smooth punch of arbitrary shape,” Int. J. Mech. Sci. 3212, 1990, pp. 991–997.CrossRefzbMATHGoogle Scholar
  6. 6.
    G.G. Bilodeau, “Regular pyramid punch problem,” J. App. Mech. 59, 1992, pp. 519–523.zbMATHCrossRefGoogle Scholar
  7. 7.
    A.C. Fischer-Cripps, Introduction to Contact Mechanics, Springer-Verlag, New York, 2000.zbMATHGoogle Scholar
  8. 8.
    D. Tabor, The Hardness of Metals, Clarendon Press, Oxford, 1951.Google Scholar
  9. 9.
    F. Auerbach, “Absolute hardness,” Ann. Phys. Chem. (Leipzig) 43, 1891, pp.61–100. Translated by C. Barus, Annual Report of the Board of Regents of the Smithsonian Institution, July 1, 1890 — June 30 1891, reproduced in “Miscellaneous documents of the House of Representatives for the First Session of the Fifty-Second Congress,” Government Printing Office, Washington, D.C., 43, 1891–1892, pp.207–236.Google Scholar
  10. 10.
    E. Meyer, “Untersuchungen über Harteprufung und Harte,” Phys. Z. 9, 1908, pp. 66–74.Google Scholar
  11. 11.
    S.L. Hoyt, “The ball indentation hardness test,” Trans. Am. Soc. Steel Treat. 6, 1924, pp. 396–420.Google Scholar
  12. 12.
    M.C. Shaw, “The fundamental basis of the hardness test,” in The Science of Hardness Testing and its Research Applications, J.H. Westbrook and H. Conrad, Eds. American Society for Metals, Cleveland, OH, 1973, pp. 1–15.Google Scholar
  13. 13.
    M.V. Swain and J.T. Hagan, “Indentation plasticity and the ensuing fracture of glass,” J. Phys. D: Appl. Phys. 9, 1976, pp. 2201–2214.CrossRefADSGoogle Scholar
  14. 14.
    M.T. Huber, “Contact of solid elastic bodies,” Ann. D. Physik, 141, 1904, pp. 153–163.zbMATHCrossRefGoogle Scholar
  15. 15.
    A.C. Fischer-Cripps, “Elastic-plastic response of materials loaded with a spherical indenter,” J. Mater. Sci. 323, 1997, pp. 727–736.CrossRefGoogle Scholar
  16. 16.
    S.Dj. Mesarovic and N. A. Fleck, “Spherical indentation of elastic-plastic solids,” Proc. R. Soc. Lond. A455, 1999, pp. 2707–2728.ADSGoogle Scholar
  17. 17.
    R. Hill, E.H. Lee and S.J. Tupper, “Theory of wedge-indentation of ductile metals,” Proc. R. Soc. London, A188, 1947, pp. 273–289.ADSMathSciNetGoogle Scholar
  18. 18.
    R. Hill, The Mathematical Theory of Plasticity, Clarendon Press, Oxford, 1950.zbMATHGoogle Scholar
  19. 19.
    D.M. Marsh, “Plastic flow in glass,” Proc. R. Soc. London, A279, 1964, pp. 420–435.ADSGoogle Scholar
  20. 20.
    L.E. Samuels and T.O. Mulhearn, “An experimental investigation of the deformed zone associated with indentation hardness impressions,” J. Mech. Phys. Solids, 5, 1957, pp. 125–134.CrossRefGoogle Scholar
  21. 21.
    T.O. Mulhearn, “The deformation of metals by Vickers-type pyramidal indenters,” J. Mech. Phys. Solids, 7, 1959, pp. 85–96.CrossRefGoogle Scholar
  22. 22.
    K.L. Johnson, “The correlation of indentation experiments,” J. Mech. Phys. Sol. 18, 1970, pp. 115–126.CrossRefGoogle Scholar
  23. 23.
    M.C. Shaw and D.J. DeSalvo, “A new approach to plasticity and its application to blunt two dimension indenters,” J. Eng. Ind. Trans. ASME, 92, 1970, pp. 469–479.CrossRefGoogle Scholar
  24. 24.
    M.C. Shaw and D.J. DeSalvo, “On the plastic flow beneath a blunt axisymmetric indenter,” J. Eng. Ind. Trans. ASME 92, 1970, pp. 480–494.CrossRefGoogle Scholar
  25. 25.
    C. Hardy, C.N. Baronet, and G.V. Tordion, “The elastic-plastic indentation of a half-space by a rigid sphere,” Int. J. Numer. Methods Eng. 3, 1971, pp. 451–462.CrossRefGoogle Scholar
  26. 26.
    CM. Perrott, “Elastic-plastic indentation: Hardness and fracture,” Wear 45, 1977, pp. 293–309.CrossRefGoogle Scholar
  27. 27.
    S.S. Chiang, D.B. Marshall, and A.G. Evans, “The response of solids to elastic/plastic indentation. 1. Stresses and residual stresses,” J. Appl. Phys. 531, 1982, pp. 298–311.ADSCrossRefGoogle Scholar
  28. 28.
    S.S. Chiang, D.B. Marshall, and A.G. Evans, “The response of solids to elastic/plastic indentation. 2. Fracture initiation,” J. Appl. Phys. 531, 1982, pp. 312–317.ADSCrossRefGoogle Scholar
  29. 29.
    K.L. Johnson, Contact Mechanics, Cambridge University Press, Cambridge, 1985.zbMATHGoogle Scholar
  30. 30.
    J.B. Pethica, “Microhardness tests with penetration depths less than ion implanted layer thickness in ion implantation into metals,” Third International Conference on Modification of Surface Properties of Metals by Ion-Implantation, Manchester, England, 23–26, 1981, V. Ashworth et al. eds., Pergammon Press, Oxford, 1982, pp. 147–157.Google Scholar
  31. 31.
    J.S. Field, “Understanding the penetration resistance of modified surface layers,” Surface and Coatings Technology, 36, 1988, pp. 817–827.CrossRefGoogle Scholar
  32. 32.
    N.A. Stillwell and D. Tabor, “Elastic recovery of conical indentations,” Phys. Proc. Soc. 782, 1961, pp. 169–179.CrossRefGoogle Scholar
  33. 33.
    R.W. Armstrong and W.H. Robinson, “Combined elastic and plastic deformation behaviour from a continuous indentation hardness test,” New Zealand Journal of Science, 17, 1974, pp. 429–433.Google Scholar
  34. 34.
    B.R. Lawn and V.R. Howes, “Elastic recovery at hardness indentations,” J. Mat. Sci. 16, 1981, pp. 2745–2752.CrossRefGoogle Scholar
  35. 35.
    S.I. Bulychev, V.P. Alekhin, M. Kh. Shorshorov, and A.P. Ternorskii, “Determining Young’s modulus from the indenter penetration diagram,” Zavod. Lab. 419, 1975, pp. 11137–11140.Google Scholar
  36. 36.
    J.L. Loubet, J.M. Georges, O. Marchesini, and G. Meille, “Vicker’s indentation of magnesium oxide,” J. Tribol. 106, 1984, pp. 43–48.CrossRefGoogle Scholar
  37. 37.
    M.F. Doerner and W.D. Nix, “A method for interpreting the data from depth-sensing indentation instruments,” J. Mater. Res. 14, 1986, pp. 601–609.ADSCrossRefGoogle Scholar
  38. 38.
    W.C. Oliver and G.M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res. 74, 1992, pp. 1564–1583.ADSCrossRefGoogle Scholar
  39. 39.
    T.J. Bell, A. Bendeli, J.S. Field, M.V. Swain, and E.G. Thwaite, “The determination of surface plastic and elastic properties by ultra-micro indentation,” Metrologia, 28, 1991, pp. 463–469.CrossRefADSGoogle Scholar
  40. 40.
    J.S. Field and M.V. Swain, “A simple predictive model for spherical indentation,” J. Mater. Res. 82, 1993, pp. 297–306.ADSCrossRefGoogle Scholar
  41. 41.
    A.C. Fischer-Cripps, “Study of analysis methods for depth-sensing indentation test data for spherical indenters,” J. Mater. Res. 166, 2001, pp. 1579–1584.ADSCrossRefGoogle Scholar
  42. 42.
    A.G. Atkins, “Topics in indentation hardness,” Metal Science, 16, 1982, pp. 127–137.CrossRefGoogle Scholar
  43. 43.
    H.M. Pollock, “Nanoindentation”, ASM Handbook, Friction, Lubrication, and Wear Technology, 18, 1992, pp. 419–429.Google Scholar
  44. 44.
    J.L. Hay and G.M. Pharr, “Instrumented indentation testing,” ASM Handbook, Materials Testing and Evaluation, 8, 2000, pp. 232–243.Google Scholar
  45. 45.
    S.A. Syed, K.J. Wahl, and R.J. Colton, “Quantitative study of nanoscale contact and pre-contact mechanics using force modulation,” Mat. Res. Soc. Symp. Proc. 594, 2000, pp. 471–476.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 2000

Personalised recommendations