Advertisement

Keywords

Wheel Speed Hubble Space Telescope Attitude Control System Torque Ripple Worm Gear 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Sirota, M.J. and Thompson, P.M., Azimuth/elevation servo design of the W. M. Keck telescope, SPIE Proc., Vol. 887, p. 168, 1988.ADSGoogle Scholar
  2. [2]
    Nurre, G., Anhouse, S.J., and Gullapalli, S.N., Hubble Space Telescope fine guidance sensor control system, SPIE Proc., Vol. 1111, p. 327, 1989.ADSGoogle Scholar
  3. [3]
    Sirota, M.J., Thompson, P. M., and Jex, H. R., Azimuth/elevation servo performance of the W. M. Keck telescope, SPIE Proc., Vol. 2199, p. 126, 1994.CrossRefADSGoogle Scholar
  4. [4]
    Campbell, M.F. and Elsaie, A.M., Structural optimization and modeling of large dynamic structures for controls simulation, SPIE Proc., Vol. 4004, p. 320, 2000.CrossRefADSGoogle Scholar
  5. [5]
    Quattri, M., Zago, L., and Plöotz, F., Design evolution and performance evaluation of the VLT telescope structure, ESO Conference on Very Large Telescopes and Their Instrumentation, Ulrich, M.-H., ed., 1988, p. 127.Google Scholar
  6. [6]
    Ravensbergen, M., Main axes servo systems of the VLT, SPIE Proc., Vol. 2199, p. 997, 1994.CrossRefADSGoogle Scholar
  7. [7]
    Huang, E., Line-of-sight sensitivity equations, Gemini Report TN-O-G0017, 1992.Google Scholar
  8. [8]
    Bay, J.S., Fundamentals of Linear State Space Systems, McGraw-Hill, 1998.Google Scholar
  9. [9]
    White, C.V. and Levine, M.B., Experiments to measure material damping at cold temperatures, Report JPL D-22047, Jet Propulsion Laboratory, 2001.Google Scholar
  10. [10]
    Landau, L.D. and Lifshitz, E.M., Theory of Elasticity, Pergamon Press, 1986, Chap. 4.Google Scholar
  11. [11]
    Friedland, B., Control Systems Design, McGraw-Hill, 1985.Google Scholar
  12. [12]
    Dougherty, H. et al., Space Telescope pointing control system, J. Guidance, Control Dynam., Vol. 5, No. 4, p. 403, 1982.ADSCrossRefGoogle Scholar
  13. [13]
    Kalman, R.E., A new approach to linear filtering and prediction problems, Trans. ASME, J. of Basic Eng., Vol. 82, p. 35, 1960.Google Scholar
  14. [14]
    Brown, R.G. and Hwang, P.Y.C., Introduction to Random Signals and Applied Kalman Filtering, John Wiley & Sons, 1992.Google Scholar
  15. [16]
    Dahl, P.R., Solid friction damping of spacecraft oscillations, AIAA Guiding and Control Conference, Paper 75–1104, 1975.Google Scholar
  16. [17]
    Bertin, B., Driving the French 2 m and 3.60 m telescopes from the horseshoe, ESO Conference on Large Telescope Design, p. 405, 1971.Google Scholar
  17. [18]
    Young, W.C., Roark’s Formulas for Stress and Strain, McGraw-Hill, 1989, p. 647.Google Scholar
  18. [19]
    Ellington, S., Disturbance rejection of the WTYN telescope position control servosystem, SPIE Proc., Vol. 2479, p. 278, 1995.CrossRefADSGoogle Scholar
  19. [20]
    Wilkes, J., Fisher, M., Selection of a tape encoding system for the main axis of the Gemini telescopes, SPIE Proc., Vol. 3112, p. 30, 1997.CrossRefADSGoogle Scholar
  20. [21]
    Erm, T. and Gutierrez, P., Integration and tuning of the VLT drive systems, SPIE Proc., Vol. 4004, p. 490, 2000.CrossRefADSGoogle Scholar
  21. [22]
    Dougherty, H., Rodden, J., Reschke, L.F., Trompetini, K., Weinstein, S.P., and Slater, D., Performance characterization of the Hubble Space Telescope rate gyro assembly, Preprints 10th IFAC Symposium, Toulouse, p. 217, 1985.Google Scholar
  22. [23]
    Cassidy, L. W. and Abreu R., Star trackers for spacecraft application, SPIE Proc., Vol. 1304, p. 58, 1990.CrossRefADSGoogle Scholar
  23. [24]
    Eaton, D.J. and Abramowicz-Reed, L., Acquisition, pointing and tracking performance of the Hubble Space Telescope fine guidance sensors, SPIE Proc., Vol. 1697, p. 236, 1992.CrossRefADSGoogle Scholar
  24. [25]
    Tyler, G.A. and Fried, D.L., Image-position error associated with quadrant detector, J. Opt. Soc. Am., Vol. 72, No. 6, p. 804, 1982.ADSCrossRefGoogle Scholar
  25. [26]
    Hardy, J.W., Adaptive Optics for Astronomical Telescopes, Oxford Books, 1998, p. 398.Google Scholar
  26. [27]
    Spagna, A., Guide star requirements for NGST, Space Telescope Science Institute Report STScI-NGST-R-0013B, 2001 (available on the STScI website).Google Scholar
  27. [28]
    Bradley, A., Abramowicz-Reed, A., Story, D., Benedict, G., and Jeffrys, W., The flight hardware and ground system for Hubble Space Telescope astrometry, PASP, Vol. 103, p. 317, 1991.CrossRefADSGoogle Scholar
  28. [29]
    Murdock, J.W., Fluid Mechanics and Its Applications, Houghton Miffin, 1976.Google Scholar
  29. [30]
    Davenport, A. G., The spectrum of horizontal gustiness near the ground in high winds, Quart. J. Roy. Met. Soc., Vol. 87, p. 194., 1961.ADSCrossRefGoogle Scholar
  30. [31]
    Simiu, E and Scanlan, R.H., Wind Effects on Structures: An Introduction to Wind Engineering, John Wiley & Sons, 1978.Google Scholar
  31. [32]
    Mikami, I. et al., Enclosure of Subaru telescope, SPIE Proc., Vol. 2199, p. 430, 1994.CrossRefADSGoogle Scholar
  32. [33]
    Medwadowski, S.J., UC telescope pier rotations due to wind action on the observatory dome, Keck Report No. 53, 1984.Google Scholar
  33. [34]
    Wertz, J. R., ed., Spacecraft Attitude Determination and Control, D. Reidel, 1986, p. 570.Google Scholar
  34. [35]
    Masterson, R.A., Miller, D.W., and Grogan, R.L., Development of empirical and analytical reaction wheel disturbance models, AIAA 40th Structures, Structural Dynamics and Materials Conference, AIAA-99-1204, 1999.Google Scholar
  35. [36]
    Bialke, B., Microvibration disturbance sources in reaction wheels and momentum wheels, Proc. ESA Conference on Spacecraft Structures, Materials & Mechanical Testing, 1996.Google Scholar
  36. [37]
    Melody, J.W., Discrete-frequency and broadband reaction wheel disturbance models, Jet Propulsion Laboratory Interoffice Memorandum 3411-95-200 csi, 1995.Google Scholar
  37. [38]
    Neat, G.W., Melody, J.W., and Lurie, B.J., Vibration attenuation approach for spaceborne optical interferometers, IEEE Trans. Control Syst. Technol., Vol. 6, No. 6, p. 689, 1998.CrossRefGoogle Scholar
  38. [39]
    Bely, P.Y., Lupie, O.L., and Hershey, J.L., The line-of-sight jitter of the Hubble Space Telescope, SPIE Proc., Vol. 1945, p. 55, 1993.CrossRefADSGoogle Scholar
  39. [40]
    Baier, H. and Locatelli, G., Active and passive microvibration control in telescope structures, SPIE Proc., Vol. 4004, p. 267, 2000.CrossRefADSGoogle Scholar
  40. [41]
    Davis, L.P., Wilson, J.F., Jewell, R.E., and Rodden, J.J., Hubble Space Telescope reaction wheel assembly vibration isolation system, Proc. NASA Workshop on Structural Dynamics and Control Interaction of Flexible Structures, Marshall Space Flight Center, N87-22702 16-15, p. 669, 1986.Google Scholar
  41. [42]
    Nye, T.W., Bronowicki, A.J., Manning, R. A., and Simonian, S.S., Applications of robust damping treatments to advanced spacecraft structures, Proceedings of the 19th Rocky Mountain Guidance & Control Conference, American Astronautical Society, Advances in the Astronautical Sciences, Vol. 92, p. 531, 1996.Google Scholar

Bibliography

  1. Den Hartog, J.P., Mechanical Vibrations, McGraw-Hill, 1957.Google Scholar
  2. Germann, L.M., Gupta, A.A., and Lewis, R.A., Precision pointing and inertial line-of-sight stabilization using fine-steering mirrors, star trackers, and accelerometers, SPIE Proc., Vol. 887, p. 96, 1988.ADSGoogle Scholar
  3. Kaplan, M. H., Modern Spacecraft Dynamics and Control, John Wiley & Sons, 1976.Google Scholar
  4. Katsuhiko O., Modern Control Engineering, Prentice-Hall, 1997.Google Scholar
  5. Kuo, B.C., Automatic Control Systems, Prentice-Hall, 1985.Google Scholar
  6. Wertz, J. R., ed., Spacecraft Attitude Determination and Control, D. Reidel, 1986.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 2003

Personalised recommendations