Advertisement

Keywords

Point Spread Function Modulation Transfer Function Spherical Aberration Mirror Surface Primary Mirror 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Nelson, J. and Temple-Raston, M., The Off-axis Expansion of Conic Surfaces, University of California TMT Report No. 9, 1982.Google Scholar
  2. [2]
    Roddier, C., Graves, J.E., Northcott, M.J., and Roddier, F., Testing optical telescopes from defocused stellar images, SPIE Proc., Vol. 2199, p. 1172, 1994.CrossRefADSGoogle Scholar
  3. [3]
    Born, M. and Wolf, E., Principles of Optics, Pergamon Press, 1989, p. 464.Google Scholar
  4. [4]
    Malacara, D., Optical Shop Testing, Appendix 2, John Wiley & Sons, 1978, p. 489.Google Scholar
  5. [5]
    Mahajan, V.N., Zernike annular polynomials for imaging systems with annular pupils, J. Opt. Soc. Am., Vol. 71, No. 1, p. 75, 1981.ADSCrossRefGoogle Scholar
  6. [6]
    Roddier, N., Atmospheric wavefront simulation using Zernike polynomials, Opt. Eng., Vol. 29, No. 10, p. 1174, 1990.CrossRefADSGoogle Scholar
  7. [7]
    Wetherell, W.B., The calculation of image quality, Applied Optics and Optical Engineering, Vol. VIII, Academic Press, 1980, p. 199.Google Scholar
  8. [8]
    Hayes, J., Fast Fourier Transforms and Their Applications, Applied Optics and Optical Engineering, Vol. XI, Academic Press, 1992, p. 55.ADSGoogle Scholar
  9. [9]
    Schroeder D. J., Astronomical Optics, Academic Press, 2000.Google Scholar
  10. [10]
    Redding, D.C. and Breckenridge, W.G., Optical modeling for dynamics and control analysis, J. Guidance, Vol. 14, No. 5, p. 1021, 1991.CrossRefGoogle Scholar
  11. [11]
    Hasan, H. and Burrows, C.J., Telescope image modeling (TIM), PASP, Vol. 107, p. 289, 1995.CrossRefADSGoogle Scholar
  12. [12]
    Maréchal, A., Etude des effets combinés de la diffraction et des aberrations géometriques sur ľimage ďun point lumineux, Rev. Opt. Théor. Instrum., No. 9, p. 257, 1947.Google Scholar
  13. [13]
    Strehl, K., Ueber Luftschlieren un Zonenfehler, Zeitschr. Instrum., Vol. 22, p. 213, 1902.Google Scholar
  14. [14]
    Wetherell, W.B., The Calculation of Image Quality, Applied Optics and Optical Engineering, Vol. VIII, Academic Press, 1980, p. 198.Google Scholar
  15. [15]
    Wilson, R.N., Reflecting Telescope Optics I, Springer-Verlag, 1996.Google Scholar
  16. [16]
    King, H.C., The History of the Telescope, Dover, 1979, p. 76.Google Scholar
  17. [17]
    Wilson, R.N., Reflecting Telescope Optics II, Springer-Verlag, 1999, p. 232.Google Scholar
  18. [18]
    Wetherell, W.B. and Rimmer, M.P., General analysis of aplanatic Cassegrain, Gregorian and Schwarzchild telescopes, Appl. Opt., Vol. 11, No. 12, p. 2817, 1972.ADSCrossRefGoogle Scholar
  19. [19]
    Meinel, A.B. and Meinel, M.P., Wind deflection compensated zero-coma telescope truss geometry, SPIE Proc., Vol. 628, p. 403, 1986.ADSGoogle Scholar
  20. [20]
    Swanson, P.N., Meinel, A.B., et al., A system concept for a moderate cost Large Deployable Reflector (LDR), SPIE Proc., Vol. 571, p. 233, 1985.ADSGoogle Scholar
  21. [21]
    Bely, P.Y., The NGST ‘Yardstick mission’, Proc. 34th Liège International Astrophysics Colloquium, The Next Generation Space Telescope, ESA SP-429, p. 159, 1998Google Scholar
  22. [22]
    Dierickx, P., Beletic, J., Delabre, B., Ferrari, M., Gilmozzi, R., and Hubin, N., The optics of OWL 100 m adaptive telescope, Proc. of Bäckaskog Workshop on Extremely Large Telescopes, Lund Univ. & ESO, 1999Google Scholar
  23. [23]
    Dierickx, P., Optical performance of large ground-based telescopes, J. Mod. Opt., Vol. 39, No. 3, p. 569, 1992.ADSCrossRefGoogle Scholar
  24. [24]
    Ferguson, H., et al., Image quality guidelines, NGST Monograph No. 7, Space Telescope Science Institute, 2001.Google Scholar
  25. [25]
    Borra, E.F., Polarimetry at the coudé focus, PASP, Vol. 88, p. 548, 1976.CrossRefADSGoogle Scholar
  26. [26]
    Babcock, H.W., Astronomical Techniques, Vol. II of Star and Stellar Systems, Hiltner, W.A., ed., Univ. of Chicago Press, 1962, p. 107.Google Scholar
  27. [27]
    Petro, L. and Stockman, H.S., Optimal pixel scales for NGST, poster presented at the AAS General Meeting, Atlanta, Jan. 2000.Google Scholar
  28. [28]
    Bowen, I. S., in The construction of Large Telescopes, Crawford, D.L., ed., IAU Symposium 27, Academic Press, 1965, p. A7.Google Scholar
  29. [29]
    Barnes, W. P., Optical materials — reflective, Applied Optics and Optical engineering, Vol. VII, Academic Press, 1979, p. 97.ADSGoogle Scholar
  30. [30]
    Paquin, R.A., Properties of Metals, in Devices, Measurements and Properties, Handbook of Optics, 2nd ed., Vol. II, McGraw-Hill, 1995, Chap. 35.Google Scholar
  31. [31]
    Hill, J.M., Angel, J.R.P., Lutz, R.D., Olbert, B.H., and Strittmatter, P.A., Casting the first 8.4 meter borosilicate honeycomb mirror for the Large Binocular Telescope, SPIE Proc., Vol. 3352, p. 172, 1998.CrossRefADSGoogle Scholar
  32. [32]
    Knohl, E-D., Schoeppach, A., and Pickering, M.A., Status of the secondary mirrors (M2) for the Gemini 8 m telescopes, SPIE Proc., Vol. 3352, p. 258, 1998.CrossRefADSGoogle Scholar
  33. [33]
    Paquin, R.A., Magida, M.B., and Vernold, C.L., Large optics from silicon carbide, SPIE Proc., Vol. 1618, p. 53, 1991.CrossRefADSGoogle Scholar
  34. [34]
    Deyerler, M., Pailer, N., and Wagner, R., Ultra-lightweight mirrors: recent developments of C/SiC, SPIE Proc., Vol. 4003, p. 73, 2000.CrossRefADSGoogle Scholar
  35. [35]
    Danjon, A. and Couder, A., Lunettes et Telescopes, Blanchard, p. 572, 1935.Google Scholar
  36. [36]
    Metha, P., Flexural rigidity characteristics of lightweighted mirrors, SPIE Proc., Vol. 748, p. 158, 1987.ADSGoogle Scholar
  37. [37]
    Valente, T. M. and Vukobratovich, D., A comparison of the merits of open back, symmetric sandwich and contoured back mirrors as lightweighted optics, SPIE Proc., Vol. 1167, p. 20, 1989.ADSGoogle Scholar
  38. [38]
    Angel, R., Martin, B., Sandler, D., Wolf, N., Bely, P., Benvenuti, P., Fosbury, R., Laurance, R., Crocker, J., and Giacconi, R., The Next Generation Space Telescope: a monolithic mirror candidate, SPIE Proc., Vol. 2807, p. 354, 1996.CrossRefADSGoogle Scholar
  39. [39]
    Horn ďArturo, G., Altri esperimenti con lo specchio a tasselli, Pubb. Osserv. Univ. Bologna, Vol. V, 11, 1950.Google Scholar
  40. [40]
    Müller, R., Höneβ, H., Morian, H., and Loch, H., Manufacture of the first primary blank for the VLT, SPIE Proc., Vol. 2199, p. 164, 1994.CrossRefADSGoogle Scholar
  41. [41]
    Pearson, E. and Stepp, L., Response of large optical mirrors to thermal distributions, SPIE Proc., Vol. 748, p. 215, 1987.ADSGoogle Scholar
  42. [42]
    Dierickx, P., Optical fabrication in the large, Proc. of Bäckaskog Workshop on Extremely Large Telescopes, Lund Univ. & ESO, p. 224, 1999.Google Scholar
  43. [43]
    Preston, F.W., The theory and design of plate glass polishing machines, J. Soc. Glass Techn., Vol. 11, No. 42, p. 214, 1927.Google Scholar
  44. [44]
    Beckstette, K. and Heynacher, E., A new fabrication technology for large mirrors, Proc. ESO Conf. on Very Large Telescopes and Their Instrumentation, Vol. I, ESO, Garching, p. 341, 1988.Google Scholar
  45. [45]
    Korhonen, T. and Lappalainen, T., Computer-controlled figuring and testing, SPIE Proc., Vol. 1236, p. 691, 1990.CrossRefADSGoogle Scholar
  46. [46]
    Korhonen, T. and Lappalainen, T., Computer-controlled figuring method for thin and flexible mirrors, SPIE Proc., Vol. 2199, p. 176, 1994.CrossRefADSGoogle Scholar
  47. [47]
    Schmidt, B., Ein lichtstarkes komafreies Spiegelsystem, Mitt. Hamburg Sternwart, Vol. 7, No. 36, p. 15, 1932.Google Scholar
  48. [48]
    Lemaitre, G., New procedure for making Schmidt corrector plates, Appl. Optics, Vol. 11, No. 7, p. 1630, 1972.ADSCrossRefGoogle Scholar
  49. [49]
    Lubliner, J. and Nelson, J.E., Stressed mirror polishing, Appl. Opt., Vol. 19, No. 14, p. 2332, 1980.ADSCrossRefGoogle Scholar
  50. [50]
    Mast, T.S. and Nelson, J.E., The fabrication of large optical surfaces using a combination of polishing and mirror bending, SPIE Proc., Vol. 330, p. 139, 1990.Google Scholar
  51. [51]
    Nelson, J.E. and Mast, T. S., Giant optical devices, in Proc. of Bäckaskog Workshop on Extremely Large Telescopes, Lund Univ. & ESO, 1999.Google Scholar
  52. [52]
    Smith, B.K., Burge, J.H., and Martin, H.M., Fabrication of large secondary mirrors for astronomical telescopes, SPIE Proc., Vol. 3134, p. 5, 1997.Google Scholar
  53. [53]
    Anderson, D., Martin, H., Burge, J., Ketelsen, D., and West, S., Rapid fabrication strategies for primary and seconday mirrors at Steward Observatory Mirror Laboratory, SPIE Proc., Vol. 2199, p. 199, 1994.CrossRefADSGoogle Scholar
  54. [54]
    Benjamin R.J., Diamond machining applications and capabilities, SPIE Proc., Vol. 433, p. 2, 1983.Google Scholar
  55. [55]
    Donaldson, R.R. and Patterson, S.R., Design and construction of a large vertical axis diamond turning machine, SPIE Proc., Vol. 433., p. 62, 1983.Google Scholar
  56. [56]
    Meinel, A.B., Bashkin, S., and Loomis, D.A., Controlled figuring of optical surfaces by energetic ionic beams, Appl. Opt., Vol. 4, p. 1674, 1965.ADSCrossRefGoogle Scholar
  57. [57]
    Wilson, S.R., Reicher, D.W., and McNeil, J.R., Surface figuring using neutral ion beams, SPIE Proc., Vol. 966, p. 74, 1988.Google Scholar
  58. [58]
    Bely, P.Y., Salmon, D.A., Wizinowhich, P.L., and Tournaire, A., Bending the CFHT Cassegrain secondary for optical figure improvement, SPIE Proc., Vol. 444, p. 253, 1984.ADSGoogle Scholar
  59. [59]
    Espiard, J., Controle par sphérometrie des grandes surfaces aspheriques, ESO/CERN Conference on Large telescope design, Geneva, 1971.Google Scholar
  60. [60]
    Malacara, D., Optical Shop Testing, John Wiley & Sons, 1978, p. 48.Google Scholar
  61. [61]
    Koliopoulos, C., Simultaneous phase shift interferometer, SPIE Proc., Vol. 531, p. 119, 1991.Google Scholar
  62. [62]
    Esnard, D., Maréchal, A., and Espiard, J., Progress in ground-based optical telescopes, Rep. Prog. Phys. Vol. 59, No. 5, p. 601, 1996.CrossRefADSGoogle Scholar
  63. [63]
    Wyant, J.C. and Bennet, V.P., Using computer gernerated holograms to test aspheric wavefronts, Applied Optics, Vol. 11, No. 12, p. 2833, 1972ADSCrossRefGoogle Scholar
  64. [64]
    McGovern, A.J. and Wyant, J.C., Computer generated holograms for testing optical elements, Appl. Opt., Vol. 10, p. 619, 1971.ADSCrossRefGoogle Scholar
  65. [65]
    Wyant, J.C. and O’Neill, P.K., Computer generated hologram; null lens test of aspheric wavefronts, Appl. Opt. Vol. 13, p. 2762, 1974.ADSCrossRefGoogle Scholar
  66. [66]
    Wilson, R.N., Reflecting Telescope Optics II, Springer-Verlag, 1988, p. 86 sqq.Google Scholar
  67. [67]
    Burge, J.H., Measurement of large convex aspheres, SPIE Proc., Vol. 2871, p. 362, 1996.CrossRefADSGoogle Scholar
  68. [68]
    Jacobson, M.R. et al., Development of silver coatings optics for the Gemini 8-meter telescope projects, SPIE Proc., Vol. 3352, p. 477, 1998.CrossRefADSGoogle Scholar
  69. [69]
    Benn, C.R., Increasing the productivity of the WHT, SPIE Proc., Vol. 4010, p. 64, 2000.CrossRefADSGoogle Scholar
  70. [70]
    Magrath, B. and Nahrstedt, D., A cleaning process for the CFHT primary mirror, PASP Vol. 108, p. 620, 1996.CrossRefADSGoogle Scholar
  71. [71]
    Kozicki, M., Hoenig S., and Robinson, P., Clean Rooms Facilities and Practice, Van Nostrand Reinhold, 1991.Google Scholar
  72. [72]
    Bennett, J.M. and Ronnow, D., Test of Opticlean strip coating material for removing surface contamination, Applied Optics, Vol. 39, No. 16, 2000.Google Scholar
  73. [73]
    Zito, R., Cleaning large optics with CO2 snow, SPIE Proc., Vol. 1236, p. 952, 1990CrossRefADSGoogle Scholar
  74. [74]
    Kimura, W.D., Kim, G.H., and Balick, B., Comparison of laser and CO2 snow for cleaning large astronomical mirrors, PASP, Vol. 107, p. 1, 1995.CrossRefGoogle Scholar
  75. [75]
    J. Clark, J., Active Cleaning Experiment for SBIRS, Presentation by Raytheon Systems Co. to Goddard Space Flight Center, March 18, 1999.Google Scholar
  76. [76]
    Sabol, B.A. et al., Evaporative coating systems for very large astronomical mirrors, SPIE Proc., Vol. 1236, p. 940, 1990.CrossRefADSGoogle Scholar
  77. [77]
    Atwood, V. and Sabol, B.A., Studies of some aspects of aluminizing large astronomical mirrors, ESO Conference on Progress in Telescope and Instrumentation Technologies, 1992.Google Scholar

Bibliography Optical Design

  1. Born, M. and Wolf, E., Principles of Optics, Pergamon Press, 1989.Google Scholar
  2. Driscoll, W.G. and Vaughan, W., Handbook of Optics, McGraw-Hill, 1978.Google Scholar
  3. King, H.C., The History of the Telescope, C. Griffn & Co., 1995.Google Scholar
  4. Korsch D., Reflective Optics, Academic Press, 1991.Google Scholar
  5. Maréchal, A., Traité ďOptique Instrumentale, published by Revue ďoptique theorique et instrumentale, 1952.Google Scholar
  6. Riedl, M.J., Optical Design Fundamentals for Infrared Systems, SPIE Tutorial Texts in Optical Engineering Vol. TT20, SPIE Press, 1995.Google Scholar
  7. Schroeder, D.J., ed., Selected Papers on Astronomical Optics, SPIE Milestone Series, Vol. MS 73, SPIE Press, 1993.Google Scholar
  8. Schroeder D. J., Astronomical Optics, Academic Press, 1999.Google Scholar
  9. Wilson, R.N., Reflecting Telescope Optics I, Springer-Verlag, 1996.Google Scholar
  10. Wyant, J.C. and Creath, K., Basic Wavefront Aberration Theory for Optical Metrology, Applied Optics and Optical Engineering, Vol. XI, Academic Press, 1992.Google Scholar
  11. Mahajan, V.N., ed., Selected Papers on Effects of Aberrations in Optical Imaging, SPIE Milestone Series, Vol. MS74, SPIE Press, 1994.Google Scholar

Fourier optics

  1. Goodman J.W., Introduction to Fourier Optics, McGraw-Hill, 1996.Google Scholar
  2. Hayes, J., Fast Fourier transforms and their applications, Applied Optics and Optical Engineering, Vol. XI, Academic Press 1992.Google Scholar
  3. Mariotti, J.-M., Introduction to Fourier optics and coherence, in Diffractionlimited Imaging with Very Large Telescopes, Alloin, M. and Mariotti, J.-M., eds., Kluwer Academic Publishers, 1989.Google Scholar
  4. Reynolds, G.O., DeVelis, J.B., Parrent, G.B., and Thompson, B.J., Tutorials in Fourier Optics, SPIE, 1989.Google Scholar

Image quality criteria

  1. Wetherell W.B., The calculation of image quality, Applied Optics and Optical Engineering, Vol. VIII, Academic Press, 1980.Google Scholar

Mirror blank materials

  1. Barnes, W.P., Optical Materials — Reflective, Applied Optics and Optical Engineering, Vol. VII, Academic Press, 1979.Google Scholar
  2. Musikant, S., Optical Materials, Marcel Dekker, 1985.Google Scholar
  3. Paquin, R., Optical Materials — Advanced Materials for Optics and Precision Structures, SPIE CR 67, SPIE, 1996.Google Scholar

Mirror blank manufacture

  1. Kumanin, K.G., Generation of Optical Surfaces, Focal Library, 1962.Google Scholar
  2. Marioge, J.-P., Surface soptiques: Méthodes de Fabrication et de Controle, Recherches, EDP Sciences, 2000.Google Scholar
  3. Wilson, R.N., Reflecting Telescope Optics II, Springer-Verlgag, 1998.Google Scholar
  4. Yoder, P R., ed., Optomechanical Design, SPIE CR 43, SPIE, 1992.Google Scholar

Optical testing

  1. Geary, J.M., Introduction to Optical Testing, SPIE VTT15, SPIE, 1993.Google Scholar
  2. Malacara, D., Optical Shop Testing, John Wiley & Sons, 1978.Google Scholar
  3. Wilson, R.N., Reflecting Telescope Optics II, Springer-Verlag, 1998.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 2003

Personalised recommendations