Skip to main content

Abstract

We consider only finite graphs, without loops. Given an undirected graph G = (V, E), a k-coloring of the vertices of G is a mapping c: V → {1, 2,..., k} for which every edge xy of G has c(x)c(y). If c(v) = i we say that v has color i. Those sets c-1(T) (i = 1,..., k) that are not empty are called the color classes of the coloring c. Each color class is clearly a stable set (i.e., a subset of vertices with no edge between any two of them), hence we will frequently view a coloring as a partition into stable sets. The graph G is called k-colorable if it admits a k-coloring, and the chromatic number of G, denoted by χ(G), is the smallest integer k such that G is k-colorable. We refer to [9, 16, 29] for general results on graph theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Aït Haddadène, S. Gravier. On weakly diamond-free Berge graphs. Disc. Math. 159 (1996), 237–240.

    Article  MATH  Google Scholar 

  2. H. Aït Haddadène, S. Gravier, F. Maffray. An Algorithm for coloring some perfect graphs. Disc. Math. 183 (1998), 1–16.

    Article  MATH  Google Scholar 

  3. H. Aït Haddadène, F. Maffray. Coloring degenerate perfect graphs. Disc. Math. 163 (1997), 211–215.

    Article  MATH  Google Scholar 

  4. S.R. Arikati, U.N. Peled. A polynomial algorithm for the parity path problem on perfectly orientable graphs. Disc. App. Math. 65 (1996), 5–20.

    Article  MATH  MathSciNet  Google Scholar 

  5. S.R. Arikati, C. Pandu Rangan. An efficient algorithm for finding a two-pair, and its applications. Disc. App. Math. 31 (1991), 71–74.

    Article  MATH  Google Scholar 

  6. L.W. Beineke. Characterizations of derived graphs. J. Comb. Th. 9 (1970), 129–135.

    Article  MATH  MathSciNet  Google Scholar 

  7. C. Berge, Les problèmes de coloration en théorie des graphes. Publ. Inst. Stat. Univ. Paris 9 (1960), 123–160.

    MATH  MathSciNet  Google Scholar 

  8. C. Berge. Färbung von Graphen, deren sämtliche bzw. deren ungerade Kreise starr sind (Zusammenfassung). Wiss. Z. Martin Luther Univ. Math.-Natur. Reihe, 10 (1961), 114–115.

    Google Scholar 

  9. C. Berge. Graphs. North-Holland, Amsterdam/New York, 1985.

    MATH  Google Scholar 

  10. C. Berge, V. Chvátal (editors). Topics on Perfect Graphs. (1984), North Holland, Amsterdam.

    MATH  Google Scholar 

  11. Ann. Disc. Math. 21 (1984), North Holland, Amsterdam.

    Google Scholar 

  12. C. Berge, P. Duchet. Strongly perfect graphs. In Topics on Perfect Graphs, C. Berge and V. Chvátal, editors, (1984), North Holland, Amsterdam.

    Google Scholar 

  13. C. Berge, P. Duchet. Strongly perfect graphs. Ann. Disc. Math. 21 (1984), 57–62.

    MathSciNet  Google Scholar 

  14. M.E. Bertschi. La colorabilité unique dans les graphes parfaits, PhD thesis, Math. Institute, University of Lausanne, Switzerland, 1988.

    Google Scholar 

  15. M. E. Bertschi, Perfectly contractile graphs. J. Comb. Th. B 50 (1990), 222–230.

    Article  MATH  MathSciNet  Google Scholar 

  16. M. E. Bertschi, B.A. Reed. A note on even pairs. Disc. Math. 65 (1987), 317–318.

    Article  Google Scholar 

  17. D. Bienstock, On the complexity of testing for odd holes and odd induced paths. Disc. Math. 90 (1991), 85–92.

    Article  MATH  MathSciNet  Google Scholar 

  18. B. Bollobás. Modern Graph Theory. Grad. Texts in Math. 184, Springer, 1998.

    Book  MATH  Google Scholar 

  19. R.L. Brooks. On colouring the nodes of a network. Proc. Cambridge Phil. Soc. 37 (1941), 194–197.

    Article  MathSciNet  Google Scholar 

  20. K. Cameron.Antichain sequences. Order, 2 (1985), 249–255.

    MATH  MathSciNet  Google Scholar 

  21. V. Chvátal, Perfectly ordered graphs, In Topics on Perfect Graphs, C. Berge and V. Chvátal, editors, (1984), North Holland, Amsterdam.

    Google Scholar 

  22. V. Chvátal, Perfectly ordered graphs, Ann. Disc. Math. 21 (1984), 63–68.

    Google Scholar 

  23. V. Chvátal, Star cutsets. J. Comb. Th. B 39 (1985), 189–199.

    Article  MATH  Google Scholar 

  24. V. Chvátal, N. Sbihi. Bull-free Berge graphs are perfect. Graphs and Combin. 3 (1987), 127–139.

    Article  MATH  MathSciNet  Google Scholar 

  25. C.M.H. de Figueiredo, S. Gravier, C. Linhares Sales. On Tucker’s proof of the Strong Perfect Graph Conjecture for K 4 -e-free graphs. To appear in Disc. Math.

    Google Scholar 

  26. C.M.H. de Figueiredo, F. Maffray. Optimizing bull-free perfect graphs. Manuscript, Universidade Federal do Rio de Janeiro, Brazil, 1998. To appear in Graphs and Combinatorics.

    Google Scholar 

  27. C.M.H. de Figueiredo, F. Maffray, O. Porto. On the structure of bull-free perfect graphs. Graphs and Combin. 13 (1997), 31–55.

    Article  MATH  MathSciNet  Google Scholar 

  28. C.M.H. de Figueiredo, F. Maffray, O. Porto. On the structure of bull-free perfect graphs, 2: the weakly triangulated case. RUTCOR Research Report 45–94, Rutgers University, 1994. To appear in Graphs and Combinatorics.

    Google Scholar 

  29. C.M.H. de Figueiredo, J. Meidanis, C. Mello. On edge-colouring indifference graphs. Theor. Comp. Sci. 181 (1997), 91–106.

    Article  MATH  Google Scholar 

  30. C.M.H. de Figueiredo, J. Meidanis, C. Mello.Local conditions for edge-coloring. J. Comb. Math, and Comb. Comp. 32 (2000), 79–91.

    MATH  Google Scholar 

  31. C.M.H. de Figueiredo, K. Vusšković.A class of beta-perfect graphs. Disc. Math. 216 (2000), 169–193.

    Article  MATH  Google Scholar 

  32. R. Diestel. Graph Theory. Grad. Texts in Math. 173, Springer, 1998.

    Google Scholar 

  33. G.A. Dirac. On rigid circuit graphs. Abh. Math. Sem. Univ. Hamburg, 25 (1961), 71–76.

    Article  MATH  MathSciNet  Google Scholar 

  34. R.D. Dutton, R.C. Brigham. A new graph coloring algorithm. Computer Journal 24 (1981), 85–86.

    Article  MATH  MathSciNet  Google Scholar 

  35. Th. Emden-Weinert, S. Hougardy, B. Kreuter. Uniquely colourable graphs and the hardness of colouring graphs of large girth. Comb., Prob. & Comp. 7 (1998), 375–386.

    Article  MATH  MathSciNet  Google Scholar 

  36. P. Erdős. Graph theory and probability. Canad. J. Math. 11 (1959), 34–38.

    Article  MathSciNet  Google Scholar 

  37. H. Everett, C.M.H. de Figueiredo, C. Linhares-Sales, F. Maffray, O. Porto, B.A. Reed. Path parity and perfection. Disc. Math. 165/166 (1997), 223–242.

    Google Scholar 

  38. H. Everett, C.M.H. de Figueiredo, C. Linhares-Sales, F. Maffray, O. Porto, B.A. Reed.Even pairs. To appear in Perfect Graphs, J. L. RamírezAlfonsín and B.A. Reed, ed., John Wiley and Sons, 2001.

    Google Scholar 

  39. J. Fonlupt, J.P. Uhry. Transformations which preserve perfectness and h-perfectness of graphs. Ann. Disc. Math. 16 (1982), 83–85.

    MATH  MathSciNet  Google Scholar 

  40. T. Gallai.Transitiv orientierbare Graphen. Acta Math. Acad. Sci. Hungar. 18 (1967), 25–66.

    Article  MATH  MathSciNet  Google Scholar 

  41. M. Garey, D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, San Francisco (1979).

    MATH  Google Scholar 

  42. G.S. Gasparian. Minimal imperfect graphs: a simple approach. Combinatorica 16 (1996), 209–212.

    Article  MATH  MathSciNet  Google Scholar 

  43. A. Ghouila-Houri. Caractérisation des graphes non orientés dont on peut orienter les arêtes de manière à obtenir le graphe d’une relation d’ordre. C.R. Acad. Sci. Paris 254 (1962), 1370–1371.

    MATH  MathSciNet  Google Scholar 

  44. P.C. Gilmore, A.J. Hoffman. A characterization of comparability graphs and of interval graphs. Canadian J. Math. 16 (1964), 539–548.

    Article  MATH  MathSciNet  Google Scholar 

  45. M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York (1980).

    MATH  Google Scholar 

  46. S. Gravier. On Tucker vertices of graphs. Disc. Math. 203 (1999), 121–131.

    Article  MATH  MathSciNet  Google Scholar 

  47. M. Grötschel, L. Lovász, A. Schrijver. Polynomial algorithms for perfect graphs. In Topics on Perfect Graphs, C. Berge and V. Chvátal, editors, (1984), North Holland, Amsterdam.

    Google Scholar 

  48. M. Grötschel, L. Lovász, A. Schrijver. Polynomial algorithms for perfect graphs. Ann. Disc. Math. 21 (1984), 325–356.

    Google Scholar 

  49. R. Hayward, Weakly triangulated graphs. J. Comb. Th. B 39 (1985), 200–208.

    Article  MATH  MathSciNet  Google Scholar 

  50. R. Hayward, C.T. Hoàng, F. Maffray. Optimizing weakly triangulated graphs. Graphs and Combin., 5 (1989), 339–349.

    Article  MATH  MathSciNet  Google Scholar 

  51. R. Hayward, C.T. Hoàng, F. Maffray. Optimizing weakly triangulated graphs. Graphs and Combin., Erratum in vol. 6 (1990), 33–35.

    Article  MATH  MathSciNet  Google Scholar 

  52. A. Hertz, A fast algorithm for coloring Meyniel graphs. J. Comb. Th. B 50 (1990), 231–240.

    Article  MATH  MathSciNet  Google Scholar 

  53. A. Hertz, COSINE, a new graph coloring algorithm. Operations Research Letters 10 (1991), 411–415.

    Article  MATH  MathSciNet  Google Scholar 

  54. A. Hertz, D. de Werra. Perfectly orderable graphs are quasi-parity graphs: a short proof. Disc. Math. 68 (1988), 111–113.

    Article  MATH  Google Scholar 

  55. C.T. Hoàng. Alternating orientation and alternating coloration of perfect graphs. J. Comb. Th. B 42 (1987), 264–273.

    Article  MATH  Google Scholar 

  56. C.T. Hoàng. Algorithms for minimum weighted coloring of perfectly ordered, comparability, triangulated and clique-separable graphs. Disc. Appl. Math. 55 (1994), 133–143.

    Article  MATH  Google Scholar 

  57. C.T. Hoàng. Perfectly orderable graphs. To appear in Perfect Graphs, J.L. Ramírez-Alfonsín and B.A. Reed, ed., John Wiley and Sons, 2001.

    Google Scholar 

  58. I. Holyer.The NP-completeness of edge-coloring. SIAM J. Computing 10 (1981), 718–720.

    Article  MATH  MathSciNet  Google Scholar 

  59. S. Hougardy. Perfekte Graphen. PhD thesis, Institut für Ökonometrie und Operations Research, Rheinische Friedrich Wilhelms Universität, Bonn, Germany, 1991.

    Google Scholar 

  60. W. L. Hsu. Decomposition of perfect graphs. J. Comb. Th. B 43 (1987), 70–94.

    Article  MATH  Google Scholar 

  61. W.L. Hsu, G.L. Nemhauser. Algorithms for maximum weighted cliques, minimum weighted clique covers, and minimum colourings of claw-free perfect graphs. In Topics on perfect graphs, C. Berge, and V. Chvátal ed., North-Holland, Amsterdam, 1984.

    Google Scholar 

  62. W.L. Hsu, G.L. Nemhauser. Algorithms for maximum weighted cliques, minimum weighted clique covers, and minimum colourings of claw-free perfect graphs. Ann. Disc. Maths 21, 1984.

    Google Scholar 

  63. T.R. Jensen, B. Toft. Graph Coloring Problems. Wiley-Interscience Series in Disc. Math, and Optimization, 1995.

    MATH  Google Scholar 

  64. D.S. Johnson. Worts case behavior of graph coloring algorithms. Proc. 5 th Southeastern Conf. on Comb., Graph Th. & Comput., Utilitas Mathematica (Winnipeg, 1979), 513–527.

    Google Scholar 

  65. R.M. Karp.Reducibility among combinatorial problems. In R.E. Miller and J.W. Thatcher, editors, Complexity of computer computations, pages 85–104. Plenum Press, New York, 1972.

    Chapter  Google Scholar 

  66. H. Kierstead, J.H. Schmerl. The chromatic number of graphs which induce neither K 1, 3 nor K 5 -e. Disc. Math. 58 (1986) 253–262.

    Article  MATH  MathSciNet  Google Scholar 

  67. C. Linhares Sales, F. Maffray. Even pairs in claw-free perfect graphs. J. Comb. Th. B 74 (1998), 169–191.

    Article  MATH  Google Scholar 

  68. C. Linhares Sales, F. Maffray, B.A. Reed. On planar perfectly contractile graphs. Graphs and Combin. 13 (1997), 167–187.

    MATH  MathSciNet  Google Scholar 

  69. L. Lovász. On chromatic number of graphs and set-systems. Acta Math. Hung. 19 (1968), 59–67.

    Article  MATH  Google Scholar 

  70. L. Lovász. Normal hypergraphs and the perfect graph conjecture. Disc. Math. 2 (1972), 253–267.

    Article  MATH  Google Scholar 

  71. L. Lovász. A characterization of perfect graphs. J. Comb. Th. B, 13 (1972), 95–98.

    Article  MATH  Google Scholar 

  72. L. Lovász. Three short proofs in Graph Theory. J. Comb. Th. B 19 (1975), 269–271.

    Article  MATH  Google Scholar 

  73. L. Lovász. Perfect Graphs. In Selected Topics in Graph Theory 2, L.W. Beineke and R.J. Wilson ed., Academic Press, 1983, 55–87.

    Google Scholar 

  74. L. Lovász, M.D. Plummer. Matching Theory. Annals of Disc. Maths 29, North-Holland, 1986.

    Google Scholar 

  75. C. Lund, M. Yannakakis. On the hardness of approximating minimization problems. J. Assoc. Comp. Mach. 41 (1994), 960–981.

    Article  MATH  MathSciNet  Google Scholar 

  76. F. Maffray, O. Porto, M. Preissmann.A generalization of simplicial elimination orderings. J. Graph Th., 23 (1996), 203–208.

    Article  MATH  MathSciNet  Google Scholar 

  77. F. Maffray, M. Preissmann. On the NP-completeness of the k-colorability problem for triangle-free graphs. Disc. Math. 162 (1996), 313–317.

    Article  MATH  MathSciNet  Google Scholar 

  78. F. Maffray, M. Preissmann. Sequential colorings and perfect graphs. Disc. Appl. Math. 94 (1999), 287–296.

    Article  MATH  MathSciNet  Google Scholar 

  79. F. Maffray, M. Preissmann.A translation of Tibor Gallai’s article ‘Transitiv orientierbare Graphen’.To appear in Perfect Graphs, J.L. Ramírez-Alfonsín and B.A. Reed, ed., John Wiley and Sons, 2001.

    Google Scholar 

  80. S.E. Markossian, G.S. Gasparian, B.A. Reed.β-perfect graphs. J. Comb. Th. B 67 (1996), 1–11.

    Article  MATH  MathSciNet  Google Scholar 

  81. D.W. Matula. A min-max theorem with application to graph coloring. SIAM Rev. 10 (1968), 481–482.

    Google Scholar 

  82. D.W. Matüla, L.L. Beck. Smallest last ordering and clustering and graph coloring algorithms. J. Assoc. Comp. Mach. 30 (1983), 417–427.

    Article  Google Scholar 

  83. R.M. McConnell, J.P. Spinrad.Linear-time modular decomposition and efficient transitive orientation of undirected graphs.Proc. 7th Annual ACM-SIAM Symp. Disc. Algorithms. SIAM, Philadelphia, 1997.

    Google Scholar 

  84. H. Meyniel. The graphs whose odd cycles have at least two chords. In Topics on Perfect Graphs, C. Berge and V. Chvátal, editors, (1984), North-Holland, Amsterdam.

    Google Scholar 

  85. H. Meyniel. The graphs whose odd cycles have at least two chords. Ann. Disc. Math. 21 (1984), 115–120.

    MathSciNet  Google Scholar 

  86. H. Meyniel. A new property of critical imperfect graphs and some consequences. European J. Comb. 8 (1987), 313–316.

    Article  MATH  MathSciNet  Google Scholar 

  87. M. Middendorf, F. Pfeiffer. On the complexity of recognizing perfectly orderable graphs. Disc. Math. 80 (1990), 327–333.

    Article  MATH  MathSciNet  Google Scholar 

  88. M. Molloy, B.A. Reed. Colouring graphs whose chromatic number is near their maximum degree. Lecture Notes in Comp. Sci., vol. 1380 (Proc. LATIN’98 Conf.), 216–225, 1998.

    Article  MathSciNet  Google Scholar 

  89. J. Mycielski. Sur le coloriage des graphes. Colloq. Math. 3 (1955), 161–162.

    MATH  MathSciNet  Google Scholar 

  90. J.L. Ramírez-Alfonsín, B.A. Reed (editors). Perfect Graphs. John Wiley and Sons, 2001.

    MATH  Google Scholar 

  91. B.A. Reed. Problem session on parity problems (Public communication). DIM ACS Workshop on Perfect Graphs, Princeton University, New Jersey, 1993.

    Google Scholar 

  92. B.A. Reed. A strengthening of Brooks’s theorem. J. Comb. Th. B 76 (1999), 136–149.

    Article  MATH  Google Scholar 

  93. F. Roussel, I. Rusu. An O(n 2 ) algorithm to color Meyniel graphs. Manuscript, LIFO, University of Orléans, France, 1998.

    Google Scholar 

  94. J. Spencer. Ten Lectures on the Probabilistic Method. CMBS-NSF Region. Conf. Ser. in Appl. Math., SIAM, Philadelphia, 1994.

    Google Scholar 

  95. J. Spinrad, R. Sritharan. Algorithms for weakly triangulated graphs. Disc. Appl. Math. 59 (1995), 181–191.

    Article  MATH  MathSciNet  Google Scholar 

  96. M.M. Syslo. Sequential coloring versus Welsh-Powell bound. Disc. Math. 74 (1989), 241–243.

    Article  MATH  MathSciNet  Google Scholar 

  97. A. Tucker. Coloring perfect (K 4 -e)-free graphs. J. Comb. Th. B 42 (1987), 313–318.

    Article  MATH  Google Scholar 

  98. A. Tucker. A reduction procedure for colouring perfect K 4 -free graphs. J. Comb. Th. B 43 (1987), 151–172.

    Article  MATH  Google Scholar 

  99. V.G. Vizing. On an estimate of the chromatic class of a p-graph (in Russian). Diskret. Analiz. 3 (1964), 23–30.

    MathSciNet  Google Scholar 

  100. D.J.A. Welsh, M.B. Powell. An upper bound on the chromatic number of a graph and its applications to timetabling problems. Computer J. 10 (1967), 85–87.

    Article  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Maffray, F. (2003). On the coloration of perfect graphs. In: Reed, B.A., Sales, C.L. (eds) Recent Advances in Algorithms and Combinatorics. CMS Books in Mathematics / Ouvrages de mathématiques de la SMC. Springer, New York, NY. https://doi.org/10.1007/0-387-22444-0_3

Download citation

  • DOI: https://doi.org/10.1007/0-387-22444-0_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-9268-2

  • Online ISBN: 978-0-387-22444-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics