Skip to main content

Anatomy and Physiology of Skeletal Development

  • Chapter
Skeletal Injury in the Child

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham E. Remodeling potential of long bones following angular osteotomies. J Pediatr Orthop 1989;9:37–43

    CAS  PubMed  Google Scholar 

  2. Alexander CJ. Effect of growth rate on the strength of the growth plate shaft junction. Skeletal Radiol 1976;1:67–72.

    Article  Google Scholar 

  3. Aoki J, Yamamoto I, Hino M, et al. Reactive endosteal bone formation. Skeletal Radiol 1987;16:545–551.

    Article  CAS  PubMed  Google Scholar 

  4. Ascenzi A, Bonucci E. The tensile properties of single osteons. Anat Rec 1967;158:375–387.

    Article  CAS  PubMed  Google Scholar 

  5. Ascenzi A, Bonucci E. The compressive properties of single osteons. Anat Rec 1968;161:377–391.

    Article  CAS  PubMed  Google Scholar 

  6. Beaupré GS, Orr TE, Carter DR. An approach for timedependent bone modeling and remodeling-theoretical development. J Orthop Res 1990;8:651–661.

    Article  PubMed  Google Scholar 

  7. Beaupré GS, Orr TE, Carter DR. An approach for time-dependent bone modeling and remodeling-application: a preliminary remodeling situation. J Orthop Res 1990;8:662–670.

    Article  PubMed  Google Scholar 

  8. Beresford WA. Chondroid Bone, Secondary Cartilage and Metaplasia. Baltimore: Urban & Schwarzenberg, 1981.

    Google Scholar 

  9. Black J, Mattson R, Korotsoff E. Haversian osteons: size, distribution, internal structure, and orientation. J Biomed Mater Res 1974;8:299–311.

    Article  CAS  PubMed  Google Scholar 

  10. Bollen A-M, Eyre DR. Bone resorption rates in children monitored by the urinary assay of collagen type I cross-linked peptides. Bone 1994;15:31–34.

    Article  CAS  PubMed  Google Scholar 

  11. Booth FW. Physiologic and biochemical effects of immobilization on muscle. Clin Orthop 1987;219:15–22.

    CAS  PubMed  Google Scholar 

  12. Borgi R, Butel J, Finidori G. La regenerescence diaphysaire d’un os long chez l’enfant. Rev Chir Orthop 1979;65:413–418

    CAS  PubMed  Google Scholar 

  13. Bright RW, Elmore SM. Physical properties of epiphyseal plate cartilage. Surg Forum 1968;19:463–465.

    CAS  PubMed  Google Scholar 

  14. Brodin H. Longitudinal bone growth: the nutrition of the epiphyseal cartilages and the local blood supply. Acta Orthop Scand 1955(suppl 29);26:1–139.

    Google Scholar 

  15. Brookes M. The Blood Supply of Bone. Norwalk, CT: Appleton-Century-Crofts, 1971.

    Google Scholar 

  16. Brown RA, Bhunn GW, Salisbury JR, Byers PD. Two patterns of calcification in primary (physeal) and secondary (epiphyseal) growth cartilage. Clin Orthop 1993;294:318–324.

    PubMed  Google Scholar 

  17. Bryce R, Aspden RM, Wytch R. Stiffening effects of cortical bone on vertebral cancellous bone in situ. Spine 1995;20:999–1003.

    CAS  PubMed  Google Scholar 

  18. Buckwalter JA, Maynard JA, Vailas AC. Skeletal fibrous tissues: tendon, joint capsule, and ligament. In: Albright JA, Brand RA (eds) The Scientific Basis of Orthopaedics. Nowalk, CT: Appleton & Lange, 1987.

    Google Scholar 

  19. Burkus JK, Ganey TM, Ogden JA. Development of the cartilage canals and the secondary center of ossification in the distal chondro-epiphysis of the prenatal human femur. Yale J Biol Med 1993;66:193–202.

    CAS  PubMed  Google Scholar 

  20. Buckwalter JA, Glimcher MJ, Cooper RR, Recker R. Bone biology. Part I. Structure, blood supply, cells, matrix and mineralization. J Bone Joint Surg Am 1995;77:1256–1289.

    Google Scholar 

  21. Burstein AH, Currey JD, Frankel VH, Reilly DT. The ultimate properties of bone tissue: the effects of yielding. J Biomech 1972;5:35–47.

    Article  CAS  PubMed  Google Scholar 

  22. Carando S, Portigliatti-Barbos M, Ascenzi A, Boyde A. Orientation of collagen in human tibial and fibular shaft and possible correlation with mechanical properties. Bone 1989;10:139–142.

    Article  CAS  PubMed  Google Scholar 

  23. Carando S, Portigliatti-Barbos M, Ascenzi A, Riggs CM, Boyde A. Macroscopic shape of and lamellar distribution within the upper limb shafts, allowing influences about mechanical properties. Bone 1991;12:265–269.

    Article  CAS  PubMed  Google Scholar 

  24. Carter DR. Mechanical loading history and skeletal biology. J Biomech 1987;20:1095–1108.

    Article  CAS  PubMed  Google Scholar 

  25. Carter DR, Caler WE. A cumulative damage model for bone fracture. J Orthop Res 1985;3:84–90.

    Article  CAS  PubMed  Google Scholar 

  26. Carter DR, Caler WE, Spengler DM, Frankel VH. Fatigue behavior of adult cortical bone: the influence of mean strain and strain range. Acta Orthop Scand 1981;52:481–492.

    CAS  PubMed  Google Scholar 

  27. Carter DR, Hayes WC. Bone compressive strength: the influence of density and strain rate. Science 1976;194:1174–1176.

    CAS  PubMed  Google Scholar 

  28. Carter DR, Hayes WC. Compact bone fatigue damage. I. Residual strength and stiffness. J Biomech 1977;10:325–388.

    Article  CAS  PubMed  Google Scholar 

  29. Carter DR, Hayes WC. Compact bone fatigue damage: a microscopic examination. Clin Orthop 1977;127:265–274.

    PubMed  Google Scholar 

  30. Carter DR, Spengler DM. Mechanical properties and composition of cortical bone. Clin Orthop 1978;135:192–199.

    PubMed  Google Scholar 

  31. Carter DR, Wong M. The role of mechanical loading histories in the development of diarthrodial joints. J Orthop Res 1988;6:1–8.

    Article  Google Scholar 

  32. Casey PJ, Moed BR. Greenstick fractures of the radius in adults: a report of two cases. J Orthop Trauma 1996;10:209–212.

    Article  CAS  PubMed  Google Scholar 

  33. Chamay A. Mechanical and morphological aspects of experimental overload and fatigue in bone. J Biomech 1970;3:263–268.

    Article  CAS  PubMed  Google Scholar 

  34. Chamay A, Tschantz P. Mechanical influences in bone remodeling: experimental research on Wolff’s law. J Biomech 1972;5:173–180.

    Article  CAS  PubMed  Google Scholar 

  35. Chan G, Hess M, Hollis J, Book L. Bone mineral status in childhood accidental fractures. Am J Dis Child 1984;138:569–573.

    CAS  PubMed  Google Scholar 

  36. Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE. Geometric control of cell life and death. Science 1997;276:1425–1428.

    Article  CAS  PubMed  Google Scholar 

  37. Chomsky N. Editorial: does mechanical usage (MU) inhibit bone “remodeling”? Calcif Tissue Int 1987;41:239–240

    Google Scholar 

  38. Christensen P, Kier J, Melsen F, et al. The subchondral bone of the proximal tibial epiphysis in osteoarthritis of the knee. Acta Orthop Scand 1982;53:889.

    CAS  PubMed  Google Scholar 

  39. Clark JM, Huber JD. The structure of the human subchondral plate. J Bone Joint Surg Br 1990;72:866–873.

    CAS  PubMed  Google Scholar 

  40. Cook SD, Harding AF, Morgan EL. Association of bone mineral density and pediatric fractures. J Pediatr Orthop 1987;7:424–427.

    CAS  PubMed  Google Scholar 

  41. Cooke RE. The Biological Basis of Pediatric Practice. New York: McGraw-Hill, 1968.

    Google Scholar 

  42. Crelin E, Koch W. An autoradiographic study of chondrocyte transformation into chondroblasts and osteocytes during bone formation in vitro. Anat Rec 1967;158:473–489.

    Article  CAS  PubMed  Google Scholar 

  43. Crilly RG. Longitudinal overgrowth of chicken radius. J Anat 1972;112:11–23.

    CAS  PubMed  Google Scholar 

  44. Currey JD. Differences in tensile strength of bone of different histologic types. J Anat 1959;93:87–102.

    CAS  PubMed  Google Scholar 

  45. Currey JD. The relationship between stiffness and the mineral content of bone. J Biomech 1969;2:477–483.

    Article  CAS  PubMed  Google Scholar 

  46. Currey JD. Strain rate and mineral content in fracture models of bone. J Orthop Res 1988;6:32–38.

    Article  CAS  PubMed  Google Scholar 

  47. Currey JD, Butler G. The mechanical properties of bone tissues in children. J Bone Joint Surg Am 1975;57:810–814.

    CAS  PubMed  Google Scholar 

  48. Dewire P, Simken PA. Subchondral plate thickness reflects tensile stress in the primate acetabulum. J Orthop Res 1996;14:838–841.

    Article  CAS  PubMed  Google Scholar 

  49. Dietlin M, Benz-Bohm G, Widemann B. The fibrous metaphyseal defect in early stage: differential diagnosis to metaphysitis. Pediatr Radiol 1992;22:461–462.

    Article  Google Scholar 

  50. Digby K. The measurement of diaphyseal growth in proximal and distal directions. J Anat Physiol 1915;50:187–202.

    Google Scholar 

  51. Dodds G. Row formation and other types of arrangements of cartilage cells in endochondral ossification. Anat Rec 1930;46:385–396.

    Article  Google Scholar 

  52. Duncan H. Jundt J, Riddle JM, Pitchford W, Christopherson T. The tibial subchondral plate. J Bone Joint Surg Am 1987;69:1212–1220.

    CAS  PubMed  Google Scholar 

  53. Edgerton BC, An K-N, Morrey BF. Torsional strength reduction due to cortical defects in bone. J Orthop Res 1990;8:851–855.

    Article  CAS  PubMed  Google Scholar 

  54. Edvardson P, Syversen SM. Overgrowth of the femur after fractures of the shaft in childhood. J Bone Joint Surg Br 1976;58:339–344.

    Google Scholar 

  55. Ehrlich MG, Zaleske DJ, Armstrong AL, et al. Physeal biochemistry. In: Uhthoff HK, Wiley JJ (eds) Behavior of the Growth Plate. New York: Raven, 1988.

    Google Scholar 

  56. Einhorn TA, Simon G, Devlin VJ, et al. The osteogenic response to distal skeletal injury. J Bone Joint Surg Am 1990;72:1374–1378.

    CAS  PubMed  Google Scholar 

  57. Ekeland A, Engesaeter LB, Langeland N. Influence of age on mechanical properties of healing fractures and intact bones in rats. Acta Orthop Scand 1982;53:527–535.

    CAS  PubMed  Google Scholar 

  58. Ellender G, Feik SA, Ramon-Anderson SM. Periosteal changes in mechanically stressed rat caudal vertebrae. J Anat 1989;163:83–96.

    CAS  PubMed  Google Scholar 

  59. Enlow DH. The functional significance of the secondary osteon. Anat Rec 1962;142:230–241.

    Google Scholar 

  60. Evans FG, Vincintelli R. Relation of the compressive properties of human cortical bone to histological structure and calcification. J Biomech 1974;7:1–8.

    Article  CAS  PubMed  Google Scholar 

  61. Farkas T, Boyd RD, Schaffler MB, et al. Early vascular changes in rabbit subchondral bone after repetitive impulsive loading. Clin Orthop 1987;219:259–265.

    PubMed  Google Scholar 

  62. Feik SA, Ellender G, Crowe DM, Ramm-Anderson SM. Periosteal response in translation induced bone remodeling. J Anat 1990;171:69–74.

    CAS  PubMed  Google Scholar 

  63. Fujio K, Nishijima N, Yamamuro T. Tendon growth in rabbits. Clin Orthop 1994;307:235–239.

    PubMed  Google Scholar 

  64. Forwood MR, Parker AW. Effects of exercise on bone morphology. Acta Orthop Scand 1986;57:204–209.

    CAS  PubMed  Google Scholar 

  65. Francis PH. On the configuration of a propagating surface fatigue crack. Appl Sci Res 1971;25:26–35.

    Article  Google Scholar 

  66. Fredericks BJ, de Campo JF, Stephton R, McCredie DA. Computed tomographic assessment of vertebral bone mineral in childhood. Skeletal Radiol 1990;19:99–102.

    Article  CAS  PubMed  Google Scholar 

  67. Frost HM. Some ABC’s of skeletal pathophysiology. 5. Microdamage physiology. Calcif Tissue Int 1991;49:229–231.

    CAS  PubMed  Google Scholar 

  68. Frost HM, Jee WSS. Perspectives: applications of a biomechanical model of the endochondral ossification mechanism. Anat Rec 1994;240:447–455.

    Article  CAS  PubMed  Google Scholar 

  69. Fujio K, Nishijima N, Yamamuro T. Tendon growth in rabbits. Clin Orthop 1994;307:235–239.

    PubMed  Google Scholar 

  70. Fyhrie DP, Schaffler MB. Failure mechanisms in human vertebral cancellous bone. Bone 1994;15:105–109.

    Article  CAS  PubMed  Google Scholar 

  71. Ganey TM, Love SM, Ogden JA. Development of vascularization in the chondroepiphysis of the rabbit. J Orthop Res 1992;10:496–510.

    Article  CAS  PubMed  Google Scholar 

  72. Ganey TM, Ogden JA, Sasse J, Neame PJ, Hilbelink DR. Basement membrane composition of cartilage canals during development and ossification of the epiphysis. Anat Rec 1995;241:425–437.

    Article  CAS  PubMed  Google Scholar 

  73. Gardner E. Osteogenesis in the human embryo and fetus. In: Bourne G (ed) The Biochemistry and Physiology of Bone. Orlando: Academic, 1971.

    Google Scholar 

  74. Gardner E, Gray D. The prenatal development of the human femur. Am J Anat 1970;129:121–148.

    Article  CAS  PubMed  Google Scholar 

  75. Germiller JA, Goldstein SA. Structure and function of embryonic growth plate in the absence of functioning skeletal muscle. J Orthop Res 1997;15:362–370.

    Article  CAS  PubMed  Google Scholar 

  76. Gigante A, Specchia N, Nori S, Greco F. Distribution of elastic fiber types in the epiphyseal region. J Orthop Res 1996;14:810–817.

    Article  CAS  PubMed  Google Scholar 

  77. Golding JSR. The mechanical factors which influence bone growth. Eur J Clin Nutr 1994;48(suppl I):5178–5185.

    Google Scholar 

  78. Gordon KR, Burns P, Keller G. Experimental changes in mineral content of juvenile mouse femora. Calcif Tissue Int 1992;51:229–232.

    Article  CAS  PubMed  Google Scholar 

  79. Guidera KJ, Grogan DP, Carey TC, Ogden JA. Biology of skeletal development and maturation. In: Menelaus M (ed) The Management of Limb Discrepancy. New York: Churchill Livingstone, 1994.

    Google Scholar 

  80. Haas SL. Retardation of bone growth by a wire loop. J Bone Joint Surg 1945;27:25–30.

    Google Scholar 

  81. Haines RW. Cartilage canals. J Anat 1933;68:45–62.

    PubMed  CAS  Google Scholar 

  82. Haines RW. The pseudoepiphysis of the first metacarpal in man. J Anat 1974;117:145–159.

    CAS  PubMed  Google Scholar 

  83. Haines RW. The histology of epiphyseal union in mammals. J Anat 1975;120:1–19.

    CAS  PubMed  Google Scholar 

  84. Hall-Craggs E. The effect of experimental epiphysiodesis on growth in length of the rabbit tibia. J Bone Joint Surg Br 1968;50:392–396.

    CAS  PubMed  Google Scholar 

  85. Hall-Craggs E. Influence of epiphyses on the regulation of bone growth. Nature 1969;221:1285–1286.

    Google Scholar 

  86. Harris HA. The growth of the long bones in childhood. Arch Intern Med 1926;38:785–806.

    CAS  Google Scholar 

  87. Hedstrom O. Growth stimulation of long bones after fracture or similar trauma. Acta Orthop Scand 1969;40(suppl);122:1–173.

    Google Scholar 

  88. Henderson RC. Assessment of bone mineral content in children. J Pediatr Orthop 1991;11:314–317.

    CAS  PubMed  Google Scholar 

  89. Henderson RC, Kemp GJ, Campion ER. Residual bonemineral density and muscle strength after fractures of the tibia or femur in children. J Bone Joint Surg Am 1992;74:211–217.

    CAS  PubMed  Google Scholar 

  90. Hernández JA, Serrano S, Mariñoso ML, et al. Bone growth and modeling changes induced by periosteal stripping in the rat. Clin Orthop 1995;320:211–219.

    PubMed  Google Scholar 

  91. Hert J. Acceleration of the growth after decrease of load on epiphyseal plates by means of spring distractors. Folia Morphol (Praha) 1969;17:194–201.

    CAS  Google Scholar 

  92. Hert J. Growth of the epiphyseal plate in circumference. Acta Anat (Basel) 1972;82:420–427.

    CAS  Google Scholar 

  93. Hert J, Kucera P, Vavra M, Volenik V. Comparison of the mechanical properties of both primary and haversian bone tissue. Acta Anat (Basel) 1965;61:412–423.

    CAS  Google Scholar 

  94. Hille E, Schulitz K-P, Gipperich J, Detlman B. Experimental stress-induced changes in growing long bones. Int Orthop 1988;12:309–315.

    Article  CAS  PubMed  Google Scholar 

  95. Hirsch C, Evans F. Studies on some physical properties of infant compact bone. Acta Orthop Scand 1965;35:300–305.

    CAS  PubMed  Google Scholar 

  96. Höcker K. The growth of the long bones in childhood. Arch Intern Med 1926;38:785–806.

    Google Scholar 

  97. Hunziker EB, Schenk RK, Cruz-Orive LM. Quantitation of chondrocyte performance in growth-cartilage during longitudinal bone growth. J Bone Joint Surg Am 1987;69:162–171.

    CAS  PubMed  Google Scholar 

  98. Hvid I, Christensen P, Sondergaard J, Christensen PB, Larsen CG. Compressive strength of tibial cancellous bone. Acta Orthop Scand 1983;54:819–825.

    CAS  PubMed  Google Scholar 

  99. Ilizarov GA. The tension-stress effect on the genesis and growth of tissues. Clin Orthop 1989;239:263–285.

    PubMed  Google Scholar 

  100. Indrekvan K, Husby OS, Gjerdet NR, Engester LB, Langeland N. Age dependent mechanical properties of rat femur: measured in vivo and in vitro. Acta Orthop Scand 1991;62:248–252.

    Google Scholar 

  101. Ingber DE. Cellular tensegrity: defining new rules of biologic design that govern the cytoskeleton. J Cell Sci 1993;104:613–627.

    PubMed  Google Scholar 

  102. Ingber DE. Tensegrity: the architectural basis of cellular mechano-transduction. Annu Rev Physiol 1997;59:575–599.

    Article  CAS  PubMed  Google Scholar 

  103. Ingber DE. The architecture of life. Sci Am 1998;278:48–57.

    Article  CAS  PubMed  Google Scholar 

  104. Jaffe HL. Metabolic Degenerative and Inflammatory Diseases of Bones and Joints. Philadelphia: Lea & Febiger, 1972.

    Google Scholar 

  105. Jee WSS, Li XJ, Schaffler MB. Adaptation of diaphyseal structure with aging and increased mechanical usage in the adult rat: a histomorphometrical and biomechanical study. Anat Rec 1991;230:332–338.

    Article  CAS  PubMed  Google Scholar 

  106. Jenkins DH, Cheng DH, Hodgson AR. Stimulation of bone growth by periosteal stripping. J Bone Joint Surg Br 1975;57:482–486.

    CAS  PubMed  Google Scholar 

  107. Jonsson U, Eriksson K. Microcracking in dog bone under load: a biomechanical study of bone visco-elasticity. Acta Orthop Scand 1984;55:441–447.

    CAS  PubMed  Google Scholar 

  108. Jonsson U, Stromberg L. Uniformity in mechanics of long bones at torque: a dog experiment. Acta Orthop Scand 1984;55:347–353.

    CAS  PubMed  Google Scholar 

  109. Jonsson U, Netz P, Stromberg L. Solid mechanics and strength of bone in young dogs. Acta Orthop Scand 1984;55:446–452.

    CAS  PubMed  Google Scholar 

  110. Jowsey J. Age changes in human bone. Clin Orthop 1960;17:210–218.

    Google Scholar 

  111. Kantomaa T. Effect of functional change on cell differentiation in the condylar cartilage. J Anat 1987;152:133–139.

    CAS  PubMed  Google Scholar 

  112. Kapur SP, Reddi AH. Influence of testosterone and dihydrotestosterone on bone-matrix induced endochondral bone formation. Calcif Tissue Int 1989;44:108–113.

    CAS  PubMed  Google Scholar 

  113. Kaweblum M, Carmen Aguilar M, Blanacas E, et al. Histological and radiographic determination of the age of physeal closure of the distal femur, proximal tibia, and proximal fibula of the New Zealand white rabbit. J Orthop Res 1994;12:747–749.

    Article  CAS  PubMed  Google Scholar 

  114. Kuhn JL, DeLacey JH, Leonellett EE. Relationship between bone growth rate and hypertrophic chondrocyte volume in New Zealand white rabbits of varying ages. J Orthop Res 1996;14:706–711.

    Article  CAS  PubMed  Google Scholar 

  115. Keck SW, Kelly PJ. The effect of venous stasis on intraosseous pressure and longitudinal bone growth in the dog. J Bone Joint Surg Am 1965;47:539–544.

    CAS  PubMed  Google Scholar 

  116. Kember NF. Cell division in endochondral ossification: a study of cell proliferation in rat bones by the method of tritiated thymidine autoradiography. J Bone Joint Surg Br 1960;42:824–829.

    Google Scholar 

  117. Kessel L. Annotations on the etiology and treatment of tibia vara. J Bone Joint Surg Br 1970;52:93–95.

    CAS  PubMed  Google Scholar 

  118. Koszyca B, Fazzalari NL, Vernon-Roberts B. Trabecular microfractures: nature and distribution in the proximal femur. Clin Orthop 1989;244:208–216.

    PubMed  Google Scholar 

  119. Kugler JG, Tomlinson A, Wagstaff A, Ward SM. The role of cartilage canals in the formation of secondary centres of ossification. J Anat 1979;129:493–502.

    CAS  PubMed  Google Scholar 

  120. Lacroix P. The Organization of Bone. London: J&A Churchill, 1951.

    Google Scholar 

  121. Lampl M, Veldhiys JD, Johnson ML. Saltation and stasis: a model of human growth. Science 1992;258:801–803.

    CAS  PubMed  Google Scholar 

  122. Landin L, Nilsson B. Bone mineral content in children with fractures. Clin Orthop 1983;178:292–298.

    PubMed  Google Scholar 

  123. Lane LB, Villacin A, Bullough PG. The vascularity and remodelling of subchondral bone and calcified cartilage in adult human femoral and humeral heads. J Bone Joint Surg Br 1977;59:272–279.

    CAS  PubMed  Google Scholar 

  124. Laval-Jeantet M, Balmain N, Juster M, Bernard J. Les rapports de la virole périchondral et du cartilage en croissance normale et pathologique. Ann Radiol (Paris) 1968;11:327–335.

    CAS  Google Scholar 

  125. Lemperg R. The subchondral bone plate of the femoral head in adult rabbits. Virchows Arch Pathol Anat 1971;352:1–23.

    Article  CAS  Google Scholar 

  126. Light T, McKinstry P, Schnitzer J, Ogden J. Regional osseous flow determination in neonatal, immature and mature canines. Trans Orthop Res Soc 1981;6:218.

    Google Scholar 

  127. Lufti AM. The role of cartilage in long bone growth: a reappraisal. J Anat 1974;117:413–422.

    Google Scholar 

  128. Mabrey JD, Fitch RD. Plastic deformation in pediatric fractures: mechanism and treatment. J Pediatr Orthop 1989;9:310–314.

    CAS  PubMed  Google Scholar 

  129. Maj F. Osservazioni sulla differenze topographiche della resistenze meccanica del tessuto osseo di uno stesso segmento schletrico. Monit Zool Ital 1938;49:139–146.

    Google Scholar 

  130. Manoli A. II. Traumatic fibular bowing with tibial fracture: report of two cases. Orthopedics 1978;1:145–147.

    PubMed  Google Scholar 

  131. Matyas JR, Bodie D, Andersen M, Frank CB. The developmental morphology of a “periosteal” ligament insertion growth and maturation of the tibial insertion of the rabbit medial collateral ligament. J Orthop Res 1990;8:412–424.

    Article  CAS  PubMed  Google Scholar 

  132. Mazess RB. Fracture risk: a role for compact bone. Calcif Tissue Int 1990;47:191–193.

    CAS  PubMed  Google Scholar 

  133. McCalden RW, McGeough JA, Barker MB, Court-Brown CM. Age related changes in the tensile properties of cortical bone. J Bone Joint Surg Am 1993;75:1183–1205.

    Google Scholar 

  134. McKenna MJ, Kleerekoper M, Ellis BI, et al. Atypical insufficiency fractures confused with Looser zones of osteomalacia. Bone 1987;8:71–76.

    Article  CAS  PubMed  Google Scholar 

  135. McKibbin B, Holdsworth F. The dual nature of epiphyseal cartilage. J Bone Joint Surg Br 1967;49:351–359.

    CAS  PubMed  Google Scholar 

  136. McKinstry P, Schnitzer JE, Light TR, Ogden JA, Hoffer P. Relationship of 99mTc-MDP uptake to regional osseous circulation in skeletally immature and mature dogs. Skeletal Radiol 1982;8:115–121.

    Article  CAS  PubMed  Google Scholar 

  137. Meadows TH, Bronk JT, Chao EYS, Kelly PJ. Effect of weightbearing on healing of cortical defects in the canine tibia. J Bone Joint Surg Am 1990;72:1074–1080.

    CAS  PubMed  Google Scholar 

  138. Mente PL, Lewis JL. Elastic modulus of calcified cartilage is an order of magnitude less than that of subchondral bone. J Orthop Res 1994;12:637–647.

    Article  CAS  PubMed  Google Scholar 

  139. Mullender MG, Huiskes R, Versleyen H, Buma P. Osteocyte density and histomorphometric parameters in cancellous bone of the proximal femur in five mammalian species. J Orthop Res 1996;14:972–979.

    Article  CAS  PubMed  Google Scholar 

  140. Murray PDF. Bones: A study of the Development and Structure of the Vertebrate Skeleton. Cambridge: University Press, 1985.

    Google Scholar 

  141. Nunamacher DM, Butterwreck DM, Provost MT. Fatigue fractures in thoroughbred racehorses: relationships with age, applied bone strain, and training. J Orthop Res 1990;8:604–611.

    Article  Google Scholar 

  142. Oestrich AE, Ahmad BS. The periphysis and its effects on the metaphysis. I. Definition and normal radiographic pattern. Skeletal Radiol 1992;21:283–286.

    Google Scholar 

  143. Ogden JA. Development of the epiphyses. In: Ferguson AB Jr (ed) Orthopaedic Surgery in Infancy and Childhood. Baltimore: Williams & Wilkins, 1975.

    Google Scholar 

  144. Ogden JA. Injury to the immature skeleton. In: Touloukian R (ed) Pediatric Trauma. New York: Wiley, 1978.

    Google Scholar 

  145. Ogden JA. The development and growth of the musculoskeletal system. In: Albright JA, Brand RA (eds) The Scientific Basis of Orthopaedics. Norwalk, CT: Appleton-Century-Crofts, 1979.

    Google Scholar 

  146. Ogden JA. Chondro-osseous development and growth. In: Urist MR (ed) Fundamental and Clinical Bone Physiology. Philadelphia: Lippincott, 1980.

    Google Scholar 

  147. Ogden JA. Growth slowdown and arrest lines. J Pediatr Orthop 1984;4:409–415.

    CAS  PubMed  Google Scholar 

  148. Ogden JA. The uniqueness of growing bones. In: Rockwood CA Jr, Wilkins KE, King RE (eds) Fractures, vol 3: Children. Philadelphia: Lippincott, 1984.

    Google Scholar 

  149. Ogden JA. Development of bone. In: Simmons D (ed) Nutrition and Bone Development. Oxford: University Press, 1991.

    Google Scholar 

  150. Ogden JA, Ganey TM, Light TR, Belsole RJ, Greene TL. Ossification and pseudoepiphysis formation in the “nonepiphyseal” end of bones of the hands and feet. Skeletal Radiol 1994;23:3–13.

    CAS  PubMed  Google Scholar 

  151. Ogden JA, Ganey TM, Light TR, Greene TL, Belsole RJ. Nonepiphyseal ossification and pseudoepiphysis formation. J Pediatr Orthop 1994;14:78–82.

    CAS  PubMed  Google Scholar 

  152. Ogden JA, Ganey TM, Ogden DA. The biologic aspects of children’s fractures. In: Rockwood CA, Wilkins KE, Beaty JW (eds) Fractures in Children. Philadelphia: Lippincott-Raven, 1997.

    Google Scholar 

  153. Ogden JA, Ganey TM, Sasse J, Neame PJ, Hilbelink DR. Development and maturation of the axial skeleton. In: Weinstein S (ed) The Pediatric Spine: Principles and Practice. New York: Raven, 1994.

    Google Scholar 

  154. Ogden JA, Grogan DP. Prenatal skeletal development and growth of the musculoskeletal system. In: Albright JA, Brand RA (eds) The Scientific Basis of Orthopaedics. Norwalk, CT: Appleton & Lange, 1987.

    Google Scholar 

  155. Ogden JA, Grogan DP, Light TR. Postnatal skeletal development and growth of the musculoskeletal system. In: Albright JA, Brand RA (eds) The Scientific Basis of Orthopaedics. Norwalk, CT: Appleton & Lange, 1987.

    Google Scholar 

  156. Ogden JA, Hempton R, Southwick W. Development of the tibial tuberosity. Anat Rec 1975;182:431–443.

    Article  CAS  PubMed  Google Scholar 

  157. Ogden JA, Neame PJ, Sasse JK, Ganey TM. Skeletal growth and development. In: Chapman MW (ed) Operative Orthopaedics, 2nd ed. Philadelphia: Lippincott, 1993.

    Google Scholar 

  158. Ogden JA, Rosenberg LC. Defining the growth plate. In: Uhthoff HK, Wiley JJ (eds) Behavior of the Growth Plate. New York: Raven, 1988.

    Google Scholar 

  159. Ontell FK, Ivanovic M, Ablin DS, Barlow TW. Bone age in children of diverse ethnicity. AJR 1996;167:1395–1398.

    CAS  PubMed  Google Scholar 

  160. O’Rahilly R, Gardner E. The timing and sequence of events in the development of the limbs in the human embryo. Anat Embryol 1975;148:1–37.

    Article  CAS  PubMed  Google Scholar 

  161. O’Rahilly R, Gardner E. The embryology of movable joints. In: The Joints and Synovial Fluid, vol 10. San Diego: Academic, 1978.

    Google Scholar 

  162. Pal GP, Routal RV. Relationship between the articular surface areas of a bone and the magnitude of stress passing through it. Anat Rec 1990;230:570–574.

    Article  Google Scholar 

  163. Panjabi MM, White AA, Southwick WO. Mechanical properties of bone as a function of rate of deformation. J Bone Joint Surg Am 1973;55:322–327.

    CAS  PubMed  Google Scholar 

  164. Park S-H, Cassim A, Llinas A, McKellop HA, Sarmiento A. Technique for producing controlled closed fractures in a rabbit model. J Orthop Res 1994;12:732–736.

    Article  CAS  PubMed  Google Scholar 

  165. Pauwels F. Eine klinische Beobachtung als Beispiel und Beweis fur funktionelle Anpassung des Knochens durch Langenwachstum. Orthopāde 1975;113:1–36.

    CAS  Google Scholar 

  166. Poland J. Traumatic Separation of the Epiphyses. London: Smith, Elder, 1898.

    Google Scholar 

  167. Porter RW. The effect of tension across a growing epiphysis. J Bone Joint Surg Br 1978;60:252–259.

    PubMed  Google Scholar 

  168. Poussa M. Vascularization of free periosteal and 100 micron thick osteoperiosteal grafts in muscle tissue environment. Acta Orthop Scand 1980;51:197–204.

    CAS  PubMed  Google Scholar 

  169. Poussa M, Ritsilā V. The osteogenic capacity of free periosteal and osteoperiosteal grafts: a comparative study in growing rabbits. Acta Orthop Scand 1979;50:491–495.

    Article  CAS  PubMed  Google Scholar 

  170. Poussa M, Rubak J, Ritsilā V. Differentiation of the osteochondrogenic cells of the periosteum in chondrotrophic environment. Acta Orthop Scand 1981;52:235–242.

    CAS  PubMed  Google Scholar 

  171. Pritchett JW. Growth plate activity in the upper extremity. Clin Orthop 1991;268:235–242.

    PubMed  Google Scholar 

  172. Pritchett JW. Practical Bone Growth. Seattle: self-published, 1993.

    Google Scholar 

  173. Radin EL. Trabecular microfractures in response to stress: the possible mechanism of Wolff’s law. In: Proceedings of the 12th Congress of the International Society of Orthopaedic Surgery and Traumatology, Tel Aviv, 1972:59.

    Google Scholar 

  174. Radin EL, Martin RB, Burr DB, et al. Effects of mechanical loading on the tissues of the rabbit knee. J Orthop Res 1984;2:221–226.

    Article  CAS  PubMed  Google Scholar 

  175. Radin EL, Parker HG, Pugh JW, et al. Response of joints to impact loading. III. Relationship between trabecular microfractures and cartilage degeneration. J Biomechan 1973;6:51–56.

    Article  CAS  Google Scholar 

  176. Rang M (ed) The Growth Plate and Its Disorders. Baltimore: Williams & Wilkins, 1969.

    Google Scholar 

  177. Reidy JA, Lingley JR, Gall EA, Barr JS. The effect of roentgen irradiation on epiphyseal growth. J Bone Joint Surg 1947;29:853–859.

    CAS  PubMed  Google Scholar 

  178. Ring PA. The influence of the nervous system upon the growth of bones. J Bone Joint Surg Br 1961;43:121–127.

    Google Scholar 

  179. Rohlig H. Periost und Langenwachstum. Beitr Orthop Traumatol 1966;13:604–611.

    Google Scholar 

  180. Rodriquez JI, Delgado E, Paniagua R. Changes in young rat radius following excision of the periochondrial ring. Calcif Tissue Int 1988;37:677–683.

    Google Scholar 

  181. Rose S, Bradley TR, Nelson JF. Factors influencing the growth of epiphyseal cartilage. Aust J Exp Biol Med Sci 1966;44:57–66.

    CAS  PubMed  Google Scholar 

  182. Rosenberg LC. The physis as an interface between basic research and chemical knowledge. J Bone Joint Surg Am 1987;66:815–821.

    Google Scholar 

  183. Roth M. The role of relative osteoneural growth in the gross morphogenesis of the skeleton: a hypothesis. Anat Clin 1982;4:211–225.

    Article  Google Scholar 

  184. Safran MR, Eckardt JJ, Kabo JIM, Oppenheim WL. Continued growth of the proximal part of the tibia after prosthetic reconstruction of the skeletally immature knee. J Bone Joint Surg Am 1992;74:1172–1179.

    CAS  PubMed  Google Scholar 

  185. Salem GJ, Zernicke RF, Martinez DA, Vailas AC. Adaptations of immature trabecular bone to moderate exercise: geometric, biochemical and biomechanical correlates. Bone 1993;14:647–654.

    Article  CAS  PubMed  Google Scholar 

  186. Sanada H, Shikata J, Hamamoto H, et al. Changes in collagen cross-linking and lysyl oxidase by estrogen. Biochim Biophys Acta 1978;541:408–413.

    CAS  PubMed  Google Scholar 

  187. Schaffler MB, Radin EL, Burr DB. Long-term fatigue behavior of compact bone at low strain magnitude and rate. Bone 1990;11:321–326.

    Article  CAS  PubMed  Google Scholar 

  188. Schenk RK, Hunziker EB. Growth plate: histophysiology, cell and matrix turnover. In: Glorieux F (ed) Rickets, vol 21. New York: Raven, 1991.

    Google Scholar 

  189. Schnitzer JE, McKinstry P, Light TR, Ogden JA. Quantitation of regional chondro-osseous circulation in canine tibia and femur. Am J Physiol 1982;242:H365–H372.

    CAS  PubMed  Google Scholar 

  190. Shapiro F, Holtrop M, Glimcher M. Organization and cellular biology of the perichondrial ossification groove of Ranvier. J Bone Joint Surg Am 1977;59:703–709.

    CAS  PubMed  Google Scholar 

  191. Sheth RD, Hobbs GR, Riggs JE, Penney S. Bone mineral density in geographically diverse adolescent populations. Pediatrics 1996;98:948–951.

    CAS  PubMed  Google Scholar 

  192. Shih MS, Norrdin RW. Effect of prostaglandin El on regional haversian remodeling in beagles with fractured ribs: a histomorphometric study. Bone 1987;8:87–94.

    Article  CAS  PubMed  Google Scholar 

  193. Siffert RS. The growth plate and its affections. J Bone Joint Surg Am 1966;48:546–559.

    CAS  PubMed  Google Scholar 

  194. Siffert RS. The effect of trauma to the epiphysis and growth plate. Skeletal Radiol 1977;2:21–28.

    Article  Google Scholar 

  195. Sijbrandij S. De involved van mechanische factoren op de groei van de epifysaire schijf, in het bijzonder bij genua valga en genua vara. Ned Tijdschr Geneesk 1972;116:1363–1367.

    CAS  Google Scholar 

  196. Silva MJ, Keavany TM, Hayes WC. Load sharing between the shell and centrum in the lumbar vertebral body. Spine 1997;22:140–150.

    Article  CAS  PubMed  Google Scholar 

  197. Simkin A, Robin G. Fracture formation in differing collagen fiber pattern of compact bone. J Biomech 1974;7:183–191.

    Article  CAS  PubMed  Google Scholar 

  198. Simmons DJ. Chronobiology of endochondral ossification. Chronobiologia 1974;1:97–105.

    CAS  PubMed  Google Scholar 

  199. Simon SR, Radin EL. The response of joints to impact loading. II. In vivo behavior of subchondral bone. J Biomech 1972;5:267–272.

    Article  CAS  PubMed  Google Scholar 

  200. Smith JW, Walmsley R. Factors affecting the elasticity of bone. J Anat 1959;93:503–508.

    CAS  PubMed  Google Scholar 

  201. Speer D. Collagenous architecture of the growth plate and perichondrial ossification groove. J Bone Joint Surg Am 1982;64:399–404.

    CAS  PubMed  Google Scholar 

  202. Sola CK, Silberman FS, Cabrini RL. Stimulation of the longitudinal growth of long bones by periosteal stripping. J Bone Joint Surg Am 1963;45:1679–1684.

    CAS  PubMed  Google Scholar 

  203. Stanka P, Bellack V, Lindner A. On the morphology of the terminal microvasculature during endochondral ossification in rats. Bone Mineral 1991;13:93–101.

    Article  CAS  Google Scholar 

  204. Strange-Vognsen HH, Laursen H. Nerves in human epiphyseal uncalcified cartilage. J Pediatr Orthop (Part B) 1997;6:56–58.

    CAS  Google Scholar 

  205. Strobino LJ, French GO, Colonna PC. The effect of increasing tensions on the growth of epiphyseal bone. Surg Gynecol Obstet 1952;95:694–701.

    CAS  PubMed  Google Scholar 

  206. Sussman MD. Collagen of growth plate cartilage. In: Uhthoff HK, Wiley JJ (eds) Behavior of the Growth Plate. New York: Raven, 1988.

    Google Scholar 

  207. Tabin CJ. Retinoids, homeoboxes, and growth factors: toward molecular models for limb development. Cell 1991;66:199–217.

    Article  CAS  PubMed  Google Scholar 

  208. Taylor GI, Palmer JH. The vascular territories (angiosomes) of the body: experimental study and clinical applications. Br J Plast Surg 1987;40:113–141.

    Article  CAS  PubMed  Google Scholar 

  209. Thompson DW. On Growth and Form. Cambridge: University Press, 1942.

    Google Scholar 

  210. Toajari E. Resistenze meccanica et elastica del tessuto oddeo studiata in rapporto alla meniche struttura. Monit Zool Ital 1938;48:178–187.

    Google Scholar 

  211. Torrance AG, Moseley JR, Suswillo RFL, Lanyon LE. Noninvasive loading of the rat ulna in vivo induces a strain-related modeling response uncomplicated by trauma or periosteal pressure. Calcif Tissue Int 1994;54:241–247.

    Article  CAS  PubMed  Google Scholar 

  212. Treharne RW. Review of Wolff’s law and its proposed means of operation. Orthop Rev 1981;10:74–79.

    Google Scholar 

  213. Trueta J. Studies of the Development and Decay of the Human Frame. Philadelphia: Saunders, 1968.

    Google Scholar 

  214. Trueta J. Bone growth. Mod Trends Orthop 1972;5:196–208.

    CAS  PubMed  Google Scholar 

  215. Trueta J, Cavadias AX. A study of the blood supply of the long bones. Surg Gynecol Obstet 1964;118:485–496.

    CAS  PubMed  Google Scholar 

  216. Trueta J, Morgan JD. The vascular contribution to osteogenesis. J Bone Joint Surg Br 1960;42:97–112.

    PubMed  Google Scholar 

  217. Turner CH. Editorial: functional determinants of bone structure: beyond Wolff’s law of bone transformation. Bone 1992;13:403–409.

    Article  CAS  PubMed  Google Scholar 

  218. Turner CH, Burr DB. Basic biomechanical measurements of bone: a tutorial. Bone 1993;14:595–608.

    Article  CAS  PubMed  Google Scholar 

  219. Umansky R. The effect of cell population density on the developmental fate of reaggregating mouse limb bud mesenchyme. Dev Biol 1966;13:31–38.

    Article  CAS  PubMed  Google Scholar 

  220. Villanueva AR, Hattner RS, Frost HM. A tetrachrome stain for fresh, mineralized bone sections, useful in the diagnosis of bone disease. Stain Technol 1964;39:87–93.

    CAS  PubMed  Google Scholar 

  221. Vinz H. Die Festigheit der reinen Knochensubstanz: Naherungsverfahren zur Bestimmung der auf den hohlraumfreien Querschnitt bezogenen Festigkeit von Knochengewebe. Gegenbaurs Morphol Jahrb 1972;117:453–471.

    CAS  PubMed  Google Scholar 

  222. Von der Mark K, Von der Mark H. The role of three genetically distinct collagen types in endochondral ossification and calcification of cartilage. J Bone Joint Surg Br 1977;59:458–467.

    PubMed  Google Scholar 

  223. Wang N, Butler JP, Ingber DE. Mechanotransduction across the cell surface and through the cytoskeleton. Science 1993;260:1124–1127.

    CAS  PubMed  Google Scholar 

  224. Warrell E, Taylor JF. The effect of trauma on tibial growth. J Bone Joint Surg Br 1976;58:375–381.

    Google Scholar 

  225. Weinhold PS, Gilbert JA, Woodard JC. The significance of transient changes in trabecular bone remodeling activation. Bone 1994;15:577–584.

    Article  CAS  PubMed  Google Scholar 

  226. Weinman DT, Kelly PJ, Owen CA. Blood flow in bone distal to a femoral arteriovenous fistula in dogs. J Bone Joint Surg Am 1964;46:1676–1683.

    CAS  PubMed  Google Scholar 

  227. Wilsman NJ, Van Sickle DC. The relationship of cartilage canals to the initial osteogenesis of secondary centers of ossification. Anat Rec 1970;168:381–396.

    Article  CAS  PubMed  Google Scholar 

  228. Wilsman NJ, Farum CE, Green EM, Lieferman EM, Clayton MK. Cell cycle analysis of proliferative zone chondrocytes in growth plates elongating at different rates. J Orthop Res 1996;14:562–572.

    Article  CAS  PubMed  Google Scholar 

  229. Wolff J. The classic: concerning the interrelationship between form and function of the individual parts of the organism. Clin Orthop 1988;228:2–11.

    PubMed  Google Scholar 

  230. Wong M, Carter DR. Mechanical stress and morphogenetic endochondral ossification of the sternum. J Bone Joint Surg Am 1988;70:992–997.

    CAS  PubMed  Google Scholar 

  231. Woo SL-Y, Peterson RH, Ohland KJ, Sites TJ, Danto MI. The effects of strain rate on the properties of the medial collateral ligament in skeletally immature and mature rabbits: a biomechanical and histological study. J Orthop Res 1990;8:712–721.

    Article  CAS  PubMed  Google Scholar 

  232. Woo SL-Y, Smith BA, Livesay GA, Blomstrom GL. Why do ligaments fail? Curr Orthop 1993;7:73–84.

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

(2000). Anatomy and Physiology of Skeletal Development. In: Skeletal Injury in the Child. Springer, New York, NY. https://doi.org/10.1007/0-387-21854-8_1

Download citation

  • DOI: https://doi.org/10.1007/0-387-21854-8_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98510-7

  • Online ISBN: 978-0-387-21854-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics