Skip to main content

Understanding the Tropospheric Transport and Fate of Agricultural Pesticides

  • Chapter
Reviews of Environmental Contamination and Toxicology

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 181))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvarez RA, Moore CB (1994) Quantum yield for production of CH3NC in the photolysis of CH3NCS. Science 14:205–207.

    Google Scholar 

  • Anderson PN, Hites RA (1996) OH radical reactions: the major removal pathway for polychlorinated biphenyls from the atmosphere. Environ Sci Technol 30:1756–1763.

    Article  CAS  Google Scholar 

  • Ando W (1981) Sulfoxidation of alkylsulfides. Sulfur Rep 1:147–213.

    Article  CAS  Google Scholar 

  • Aspelin AL, Grube AH (1999) Pesticides industry sales and usage: 1996 and 1997 market estimates. #733-R-99-001. U.S. Environmental Protection Agency, Washington, DC.

    Google Scholar 

  • Atkinson R (1986) Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds under atmospheric conditions. Chem Rev 85:69–201.

    Article  Google Scholar 

  • Atkinson R (1988) Estimation of gas-phase hydroxyl radical rate constants for organic chemicals. Environ Toxicol Chem 7:435–442.

    CAS  Google Scholar 

  • Atkinson R (1989) J Phys Chem Ref Data Monog 1:1–246.

    Google Scholar 

  • Atkinson R (1994) J Phys Chem Ref Data Monog 2:1–216.

    CAS  Google Scholar 

  • Atkinson R, Aschmann SM, Arey J, McElroy PA, Winer AM (1989) Product formation from the gas-phase reactions of the OH radical with (CH3O)3PS and (CH3O)3P(S) SCH3. Environ Sci Technol 23:243–244.

    Article  CAS  Google Scholar 

  • Atkinson R, Guicherit R, Hites R, Palm W, Seiber JN, de Voogt P (1999) Transformation of pesticides in the atmosphere: a state of the art. Water Air Soil Pollut 115:219–243.

    Article  CAS  Google Scholar 

  • Baker LW, Fitzell DL, Seiber JN, Parker TR, Shibamoto T, Poore MW, Longley KE, Tomlin RP, Propper R, Duncan DW (1996) Ambient air concentrations of pesticides in California. Environ Sci Technol 30:1365–1368.

    Article  CAS  Google Scholar 

  • Beyer A, Mackay D, Matthies M, Wania F, Webster E (2000) Assessing long-range transport potential of persistent organic pollutants. Environ Sci Technol 34:699–703.

    Article  CAS  Google Scholar 

  • Bidelman TF (1988) Atmospheric processes. Environ Sci Technol 22:361–367.

    Article  Google Scholar 

  • Brubaker WW, Hites RA (1998) OH reaction kinetics of gas-phase α-and γ-hexachloro-cyclohexane and hexachlorobenzene. Environ Sci Technol 32:766–769.

    Article  CAS  Google Scholar 

  • Burrows HD, Canle M, Santaballa JA, Steenken S (2002) Reaction pathways and mechanisms of photodegradation of pesticides. J Photochem Photobiol B 67:71–108.

    Article  PubMed  CAS  Google Scholar 

  • Calvert JG, Pitts JN (1966) Photochemistry. Wiley, New York.

    Google Scholar 

  • Carrera G, Fernandez P, Grimalt JO (2002) Atmospheric deposition of organochlorine compounds to remote high mountain lakes of Europe. Environ Sci Technol 36:2581–2588.

    Article  PubMed  CAS  Google Scholar 

  • Carter WP, Luo D, Malkina IL (1997) Investigation of the atmospheric reaction of chloropicrin. Atmos Environ 31:1425–1439.

    Article  CAS  Google Scholar 

  • Chameides WL, Davis DD (1982) Chemistry in the atmosphere. Special report. Chem Eng News 11/4/92:39–52.

    Google Scholar 

  • Cooter EJ, Hutzell WT (2002a) A regional atmospheric fate and transport model for atrazine. 1. Development and implementation. Environ Sci Technol 36:4091–4098.

    Article  PubMed  CAS  Google Scholar 

  • Cooter EJ, Hutzell WT, Foreman WT, Majewski MS (2002b) A regional atmospheric fate and transport model for atrazine. 2. Evaluation. Environ Sci Technol 36:4593–4599.

    Article  PubMed  CAS  Google Scholar 

  • Coutreels W, Van Cauwenberghe K (1978) Experiments on the distribution of organic pollutants between airborne particulate matter and the corresponding gas-phase. Atmos Environ 12:133–135.

    Google Scholar 

  • Crosby DG, Moilanen KW (1974) Vapor-phase photodecomposition of aldrin and dieldrin. Arch Environ Contamin Toxicol 2:62–74.

    Article  CAS  Google Scholar 

  • Crosby DG, Moilanen KW (1977) Vapor-phase photodecomposition of DDT. Chemosphere 6:167–172.

    Article  CAS  Google Scholar 

  • Crutzen PJ (1982) The global distribution of hydroxyl. In: Atmospheric Chemistry. Springer, Berlin, pp 313–328.

    Google Scholar 

  • Cupitt LT (1980) Fate of toxic and hazardous materials in the air environment. EPA-600/53-80-084. U.S. Environmental Protection Agency, Athens, GA.

    Google Scholar 

  • Datta S, McConnell LL, Baker JE, LeNoir J, Seiber JN (1998) Evidence for atmospheric transport and deposition of polychlorinated biphenyls to the Lake Tahoe basin, California-Nevada. Environ Sci Technol 32:1378–1385.

    Article  CAS  Google Scholar 

  • de Voogt P, Jansson B (1993) Verticals and long-range transport of persistent organics in the atmosphere. Rev Environ Contam Toxicol 132:1–27.

    Google Scholar 

  • Edelstein DM, Spatz DS (1994) Unresolved issues in pesticide fate data guidance. Presented at the 8th IUPAC International Congress of Pesticide Chemistry, Washington, DC.

    Google Scholar 

  • Elend M, Zetzch C, Sarafin R (1994) Photolytic and photochemical degradation of MITC (methyl isothiocyanate) in air. Presented at the 8th IUPAC International Congress of Pesticide Chemistry, Washington, DC.

    Google Scholar 

  • Finlayson-Pitts BJ, Pitts JN Jr. (1986) Atmospheric Chemistry: Fundamental and Experimental Techniques. Wiley, New York.

    Google Scholar 

  • Forman WT, Bidelman TF (1987) An experimental system for investigating vapor-particle partitioning of trace organic pollutants. Environ Sci Technol 21:869–875.

    Article  Google Scholar 

  • Galloway JN, Eisenreich SJ, Scott BC (1980) Toxic substances in the atmospheric deposition: a review and assessment. Report NC-141, National Atmospheric Deposition Program. EPA560/5-80-001. USEPA, Washington, DC.

    Google Scholar 

  • Geddes JD, Miller GC, Taylor GE (1995) Gas phase photolysis of methyl isothiocyanate. Environ Sci Technol 29:2590–2594.

    CAS  Google Scholar 

  • Glotfelty DE (1978) The atmosphere as a sink for applied pesticides. J Air Pollut Control Assoc 28:917–921.

    CAS  Google Scholar 

  • Glotfelty DE, Schomburg CJ, McChesney MM, Sagebiel JC, Seiber JN (1990a) Studies in the distribution, drift and volatilization of diazinon resulting from spray application to a dormant peach orchard. Chemosphere 21:1303–1314.

    Article  CAS  Google Scholar 

  • Glotfelty DE, Williams GH, Freeman HP, Leech MM (1990b) Regional atmospheric transport and deposition of pesticides in Maryland. In: Kurtz DA (ed) Long Range Transport of Pesticides. Lewis, Chelsea, MI, pp 199–221.

    Google Scholar 

  • Goodman MA, Aschmann SM, Atkinson R, Winer AM (1988) Atmospheric reactions of a series of dimethyl phosphoroamidates and dimethyl phosphorothioamidates. Environ Sci Technol 22:578–583.

    Article  CAS  Google Scholar 

  • Goolsby DA, Thuman EM, Pommes ML, Meyers MT, Battaglin WA (1997) Herbicides and their metabolites in rainfall: origin, transport, and deposition patterns across the Midwestern and Northeastern United States, 1990–1991. Environ Sci Technol 31: 1325–1333.

    Article  CAS  Google Scholar 

  • Guicherit R, Bakker DJ, De Voogt P, Van Der Berg F, Van Dijk HFG, Van Pul WAH (1998) Risk assessment for pesticides in the atmosphere. In: van Duk H, Van Pul W, De Voogt P, (eds) Fate of Pesticides in the Atmosphere: Implications for Environmental Risk Assessment. Kluwer, London.

    Google Scholar 

  • Harman-Fetcho JA, McConnell LL, Rice CP, Baker JE (2000) Wet deposition and air-water gas exchange of currently used pesticides to a subestuary of the Chesapeake Bay. Environ Sci Technol 34:1462–1468.

    Article  CAS  Google Scholar 

  • Hautala RR (1978) Surfactant effects on pesticide photochemistry in soil and water. EPA-600/3-78-060. USEPA, Washington, DC.

    Google Scholar 

  • Hebert VR, Miller GC (1994) Evaluation of pesticide photodegradation in air under current EPA 161–4 guidelines. Presented at the 8th IUPAC International Congress of Pesticide Chemistry, Washington, DC, July 1994.

    Google Scholar 

  • Hebert VR, Miller GC (1998) Gas phase photolysis of phorate, a dithioether pesticide. Chemosphere 36:2057–2066.

    Article  CAS  Google Scholar 

  • Hebert VR, Hoonhout C, Miller GC (2000a) Use of stable tracer studies to evaluate pesticide photolysis at elevated temperatures. J Agric Food Chem 48:1916–1921.

    Article  PubMed  CAS  Google Scholar 

  • Hebert VR, Hoonhout C, Miller GC (2000b) Reactivity of certain organophosphorus insecticides toward hydroxyl radicals at elevated air temperatures. J Agric Food Chem 48:1922–1928.

    Article  PubMed  CAS  Google Scholar 

  • Hung H, Halsall CJ, Blanchard P, Li HH, Fellin P, Stern G, Rosenberg P (2002) Temporal trends of organochlorine pesticides in the Canadian arctic atmosphere. Environ Sci Technol 36:862–868.

    Article  PubMed  CAS  Google Scholar 

  • James RR, Hites RA (2002) Atmospheric transport of toxaphene from the Southern United States to the Great Lakes Region. Environ Sci Technol 36:3474–3481.

    Article  PubMed  CAS  Google Scholar 

  • Jantunen LMM, Bidleman TF, Harner T, Parkhurst WJ (2000) Toxaphene, chlordane, and other organochlorine pesticides in Alabama air. Environ Sci Technol 34:5097–5105.

    Article  CAS  Google Scholar 

  • Junge CE (1975) Transport mechanisms for pesticides in the atmosphere. Pure Appl Chem 42:95–104.

    CAS  Google Scholar 

  • Jury WA, Spencer WF, Farmer WJ (1983) Behavior assessment model for trace organics in soil. I. Model description. J Environ Qual 12:558–564.

    CAS  Google Scholar 

  • Jury WA, Spencer WF, Farmer (1984a) Behavior assessment model for trace organics in soil. III. Application of screening model. J Environ Qual 13:573–579.

    CAS  Google Scholar 

  • Jury WA, Spencer WF, Farmer WJ (1984b) Behavior assessment model for trace organics in soil. IV. Review of experimental evidence. J Environ Qual 13:580–586.

    CAS  Google Scholar 

  • Kurtz DA (ed) (1990) Long Range Transport of Pesticides Lewis, Chelsea, MI.

    Google Scholar 

  • Kwok E, Atkinson R, Arey J (1992) Gas phase atmospheric chemistry of selected thiocarbamates. Environ Sci Technol 26:1798.

    Article  CAS  Google Scholar 

  • Kwok E, Atkinson R, Arey J (1995) Rate constants for the gas-phase reactions of the OH radical with dichlorobiphenyls, dichlorodibenzo-p-dioxin, 1, 2-dimethyloxybenzene and diphenyl ether. Estimation for OH radical reaction rates for PCBs, PCDDs, and PCDFs. Environ Sci Technol 29:1591–1598.

    Article  CAS  Google Scholar 

  • Lee RGM, Burnett V, Harner T, Jones KC (2000) Short-term temperature-dependent air-surface exchange and atmospheric concentrations of polychlorinated naphthalenes and organochlorine pesticides. Environ Sci Technol 34:393–398.

    Article  CAS  Google Scholar 

  • Lee S, McLaughlin R, Harnly M, Gunier R, Kreutzer R (2002) Community exposure to airborne agricultural pesticides in California: ranking of inhalation risks. Environ Health Perspect 110:1175–1184.

    Article  PubMed  CAS  Google Scholar 

  • Lemaire J, Campbell I, Hulpe H, Guth JA, Merz W, Phelp J, von Waldron C (1982) An assessment of test methods for photodegradation of chemicals in the environment. Rep no. 3, European Chemical and Industrial Ecology and Toxicology Center, Brussels, Belguim.

    Google Scholar 

  • Lewis RG, Lee RE Jr (1976) Air pollution from pesticides: sources, occurrence and dispersion. In: Lee RE Jr (ed) Air Pollution from Pesticides and Agricultural Processes. CRC Press, Cleveland, pp 5–50.

    Google Scholar 

  • Majewski MS, Capel PD (1995) Pesticides in the atmosphere: distribution, trends, and governing factors. In: Gilliol RJ (ed) Pesticides in the Hydrologic System, Vol. 1. Ann Arbor Press, Ann Arbor, MI.

    Google Scholar 

  • Majewski MS, Glotfelty DE, Paw KT, Seiber JN (1990) A field comparison of several methods for measuring pesticide evaporation rates from soil. Environ Sci Technol 24: 1490–1497.

    Article  CAS  Google Scholar 

  • Majewski MS, Foreman WT, Goolsby DA, Nakagari N (1998) Airborne pesticide residues along the Mississippi River. Environ Sci Technol 32:3689–3698.

    Article  CAS  Google Scholar 

  • McConnell LL, Nelson E, Rice CP, Baker JE, Johnson WE, Harmon JA, Bialek K (1997) Chlorpyrifos in the air and surface water of Chesapeake Bay: predictions of atmospheric deposition fluxes. Environ Sci Technol 31:1390–1398.

    Article  CAS  Google Scholar 

  • McConnell LL, LeNoir JN, Datta S, Seiber JN (1998) Wet deposition of current-use pesticides in the Sierra Nevada mountain range, California, USA. Environ Toxicol Chem 17:1908–1916.

    Article  CAS  Google Scholar 

  • Meylan W, Howard D (1996) Estimation Accuracy of the Atmospheric Oxidation Program. Syracuse Research Corporation, Syracuse, NY.

    Google Scholar 

  • Mill T (1980) Chemical and photooxidation. In: Hutzinger O (ed) The Handbook of Environmental Chemistry, Vol. 2. Springer, Berlin, pp. 77–105.

    Google Scholar 

  • Mill T, Mabey WR, Bomberger DC, Chou TW, Hendry DG, Smith JH (1981) Laboratory protocols for evaluating the fate of organic chemicals in air and water. EPA Contract No. 68-03-2227. USEPA, Athens, GA.

    Google Scholar 

  • Miller GC, Hebert VR (1987) Environmental photodecomposition of residues. In: Seiber JN (ed) Fate of Pesticides in the Environment. Publ 3320. Agriculture and Natural Resources, University of California, Davis.

    Google Scholar 

  • Miller GC, Zepp RG (1983) Extrapolating photolysis rates from the laboratory to the environment. Residue Rev 85:89–110.

    CAS  Google Scholar 

  • Moilanen KW, Crosby DG, Soderquist CJ, Wong AS (1975) Dynamic aspects of pesticide photodecomposition. In: Haque R, Freed V (eds) Environmental Dynamics of Pesticides Plenum Press, New York.

    Google Scholar 

  • Moilanen KW, Crosby DG, Humphrey JR, Giles JW (1978) Vapor-phase photodecomposition of chloropicrin (trichloronitromethane). Tetrahedron 34:2245–3349.

    Article  Google Scholar 

  • Mongar K, Miller GC (1988) Vapor phase photolysis of trifluralin in an outdoor chamber. Chemosphere 17:2183–2188.

    Article  CAS  Google Scholar 

  • Montgomery J (1993) Agrochemicals Desk Reference: Environmental Data. Lewis, Chelsea, MI.

    Google Scholar 

  • Oehme M, Haugen JE, Schlabach M (1996) Seasonal changes and relations between levels of organochlorines in arctic air: first year results of an all year-round monitoring program at Ny-Alesund, Svalbard, Norway. Environ Sci Technol 30:2294–2304.

    Article  CAS  Google Scholar 

  • OECD (1992) The Rate of Photochemical Transformation of Gaseous Organic Com-pounds in Air Under Tropospheric Conditions. OECD Monograph no. 61. Organisation of Economic Cooperation and Development, Paris.

    Google Scholar 

  • Pankow JF (1987) Review and comparative analysis of the theories on partitioning between the gas and aerosol particulate phases in the atmosphere. Atmos Environ 21: 2275–2283.

    Article  CAS  Google Scholar 

  • Pankow JF (1994) An absorption model of gas/particle partitioning of organics in the atmosphere. Atmos Environ 28:185–188.

    Article  CAS  Google Scholar 

  • Pawliszyn J (1997) Solid Phase Microextraction: Theory and Practice. Wiley-VCH, New York.

    Google Scholar 

  • Pilar M, Tuazon EC, Atkinson R, Maugham AD (2002) Atmospheric gas-phase reactions of selected phosphorus containing compounds. J Phys Chem A 106:1542–1550.

    Article  CAS  Google Scholar 

  • Pimentel D, Levitan L (1986) Pesticides: amounts applied and amounts reaching pests. Bioscience 36:86–91.

    Article  CAS  Google Scholar 

  • Pitts JN (1981) Experimental protocol for determining absorbance cross sections of organic chemicals. Rep 60013-81-051. USEPA, Washington, DC.

    Google Scholar 

  • Popendorf WJ, Leffingwell JT (1978) Natural variation in the decay and oxidation of parathion foliar residues in California orange groves. J Agric Food Chem 26:437–441.

    Article  CAS  Google Scholar 

  • Reichman R, Mahrer Y, Wallach R (2000a) A combined soil-atmosphere model for evaluating the fate of surface-applied pesticides. 1. Model development and verification. Environ Sci Technol 34:1313–1320.

    Article  CAS  Google Scholar 

  • Reichman R, Mahrer Y, Wallach R (2000b) A combined soil-atmosphere model for evaluating the fate of surface-applied pesticides. 2. Effect of varying environmental conditions. Environ Sci Technol 34:1321–1330.

    Article  CAS  Google Scholar 

  • Rice CP, Nochetto CB, Zara P (2002) Volatilization of trifluralin, atrazine, metolachlor, chlorpyrifos, α-endosulfan, and β-endosulfan from freshly tilled soil. J Agric Food Chem 50:4009–4017.

    Article  PubMed  CAS  Google Scholar 

  • Rodan BD, Pennington DW, Eckley N, Boethling RS (1999) Screening for persistent organic pollutants: techniques to provide a scientific basis for POPs criteria in international negotiations. Environ Sci Technol 33:3482–3488

    Article  CAS  Google Scholar 

  • Sanusi A, Millet M, Mirabel P, Watsham H (1999) Gas-phase partitioning of pesticides in environmental samples. Atmos Environ 33:4941–4951.

    Article  CAS  Google Scholar 

  • Sauret N, Mirabel P, Wortham H (2001) Distribution of pesticides and their metabolites in the three atmospheric phases. http://ies.jrc.cec.eu.int/Units/cc/events/torino2001/torinocd.

  • Schottler SP, Eisenreich SH (1994) Herbicides in the Great Lakes. Environ Sci Technol 28:2228–2232.

    Article  CAS  Google Scholar 

  • Seiber JN, Woodrow JE (1995) Origin and fate of pesticides in air. Ragsdale NN, Kearney PC, Plimmer JR (eds) Eighth International Congress of Pesticide Chemistry: Options 2000. Conference Proceedings Series. American Chemical Society, Washington, DC, pp 157–172.

    Google Scholar 

  • Seiber JN, Woodrow JE (1998) Air transport of pesticides. Rev Toxicol 2:294–298.

    Google Scholar 

  • Seiber JN, Wilson BW, McChesney MM (1993) Air and fog deposition residues of four organophosphorous insecticides used on dormant orchards in the San Joaquin Valley, California. Environ Sci Technol 27:2236–2243.

    Article  CAS  Google Scholar 

  • Soderquist CJ, Crosby DG, Moilanen KW, Seiber J, Woodrow JE (1975) Occurrence of trifluralin and its photoproducts in air. J Agric Food Chem 23:304–309.

    Article  PubMed  CAS  Google Scholar 

  • Spear RC, Lee YS, Leffingwell JT, Jenkins D (1978) Conversion of parathion to paraoxon in foliar residues: effect of dust level and ozone concentration. J Agric Food Chem 26:434–436.

    Article  CAS  Google Scholar 

  • Spencer WF, Farmer WJ, Cliath MM (1973) Pesticide volatilization. Residue Rev 49: 1–47.

    CAS  Google Scholar 

  • Spencer WF, Shoup TD, Spear RC (1980) Conversion of parathion to paraoxon on soil dusts as related to atmospheric oxidants at three California locations. Exposure of agricultural workers. J Agric Food Chem 28:1295–1300.

    Article  CAS  Google Scholar 

  • Taylor AW, Spencer WF (1990) Volatilization and vapor transport processes. In: Pesticides in the Soil Environment: Processes, Impacts, and Modeling. SSSA Book Series #2.Soil Science Society of America, Madison, WI, pp 213–269.

    Google Scholar 

  • Thurman KM, Cromwell AE (2000) Atmospheric transport, deposition, and fate of triazine herbicides and their metabolites in pristine areas at Isle Royale National Park. Environ Sci Technol 34:3079–3085.

    Article  CAS  Google Scholar 

  • Tuazon EC, Atkinson R, Aschmann SM, Arey J, Winer AM, Pitts JN Jr. (1986) Atmospheric loss processes for 1, 2-dibromo-3-chloropropane and trimethyl phosphate. Environ Sci Technol 20:1043–1046.

    Article  CAS  Google Scholar 

  • Turro NT (1978) Modern Molecular Photochemistry. Benjamin/Cummings, Menlo Park.

    Google Scholar 

  • USEPA (1992) Rejection Rate Analysis. Office of Pesticide Programs, USEPA, Washington, DC.

    Google Scholar 

  • Walter U (1998) Pesticide volatilization: a comparison of methods for measuring and approaches to fuzzy logic modeling. PhD dissertation. Humboldt University, Berlin.

    Google Scholar 

  • Wania F (2003) Assessing the potential of persistent organic chemicals for long-range transport and accumulation in polar regions. Environ Sci Technol

    Google Scholar 

  • Wania F, MacKay D (1993) Global fractionation and cold condensation of low volatility organochlorine compounds in polar regions. Ambio 22:10–18.

    Google Scholar 

  • Wania F, Haugen JE, Lei YD, Mackay D (1998) Temperature dependence of atmospheric concentrations of semivolatile organic compounds. Environ Sci Technol 32: 1013–1021.

    Article  CAS  Google Scholar 

  • Willis GH, McDowell LL, Harper LA, Southwick LM, Smith S (1983) Seasonal dissapperance and volatilization of toxaphene and DDT from a cotton field. J Environ Qual 12:80–85.

    CAS  Google Scholar 

  • Winer AM, Atkinson R (1990) Atmospheric reaction pathways and lifetimes for organophosphorus compounds. In: Kurtz DA (ed) Long Range Transport of Pesticides. Lewis, Chelsea, MI.

    Google Scholar 

  • Woodrow JE, Seiber JN, Crosby DG, Moilanen KW, Soderquist CJ, Mourer C (1977) Airborne and surface residues of parathion and its conversion products in a treated plum orchard environment. Arch Environ Contam Toxicol 6:175–191.

    Article  PubMed  CAS  Google Scholar 

  • Woodrow JE, Crosby DG, Mast T, Moilanen KW, Seiber JN (1978) Rates of transformation of trifluralin and parathion vapors in air. J Agric Food Chem 26:1312.

    Article  CAS  Google Scholar 

  • Woodrow JE, Crosby DG, Seiber JN (1983) Vapor-phase photochemistry of pesticides. Residue Rev 85:111–125.

    CAS  Google Scholar 

  • Woodrow JE, McChesney MM, Seiber JN (1990) Modeling the volatilization of pesticides and their distribution into the atmosphere. In: Kurtz DA (ed) Long Range Transport of Pesticides. Lewis, Chelsea, MI.

    Google Scholar 

  • Woodrow JE, Seiber JN, Baker LW (1997) Correlation techniques for estimating pesticide volatilization flux and downwind concentrations. Environ Sci Technol 31:523–529.

    Article  CAS  Google Scholar 

  • Woodrow JE, Seiber JN, Dary C (2001) Predicting pesticide emissions and downwind concentrations using correlations with estimated vapor pressures. J Agric Food Chem 49:3841–3846.

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki H, Kuwata K, Miyamoto H (1982) Effects of ambient temperature on aspects of airborne polycyclic aromatic hydrocarbons. Environ Sci Technol 16:189–194.

    Article  CAS  Google Scholar 

  • Zabik JM, Seiber JN (1993) Atmospheric transport of organophosphate pesticides from California’s Central Valley to the Sierra Nevada Mountains. J Environ Qual 22: 80–90.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by George W. Ware.

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag

About this chapter

Cite this chapter

Hebert, V.R., Miller, G.C. (2004). Understanding the Tropospheric Transport and Fate of Agricultural Pesticides. In: Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, vol 181. Springer, New York, NY. https://doi.org/10.1007/0-387-21733-9_1

Download citation

  • DOI: https://doi.org/10.1007/0-387-21733-9_1

  • Received:

  • Accepted:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-20519-9

  • Online ISBN: 978-0-387-21733-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics