Skip to main content

Diagnostic Uses of Radiopharmaceuticals in Nuclear Medicine

  • Chapter
Fundamentals of Nuclear Pharmacy
  • 242 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Suggested Reading

  • Anthony CP, Thibodeau GA. Textbook of Anatomy and Physiology. St. Louis: Mosby; 1979.

    Google Scholar 

  • Arnold RW, Subramanian G, McAfee JG, et al. Comparison of 99mTc complexes for renal imaging. J Nucl Med. 1975; 16:357.

    CAS  PubMed  Google Scholar 

  • Atkins HL, Budinger TF, Lebowitz E, et al. Thallium-201 for medical use. Part 3: Human distribution and physical imaging properties. J Nucl Med. 1977; 18:133.

    CAS  PubMed  Google Scholar 

  • Barrio JR, Huang SC, Melega WP, et al. 6-[18F]fluoro-L-dopa probes dopamine turnover rates in central dopaminergic structures. J Neurosci Res. 1990; 27:487.

    Article  CAS  PubMed  Google Scholar 

  • Berman DS, Kiat HS, Van Train KF, et al. Myocardial perfusion imaging with technetium-99m-sestamibi: comparative analysis of imaging protocols. J Nucl Med. 1994; 35:681.

    CAS  PubMed  Google Scholar 

  • Delbeke D, Martin WH, Patton JA, et al., eds. Practical FDG Imaging. A Teaching File. New York: Springer Verlag; 2002.

    Google Scholar 

  • Dienel GA, Cruz NF, Sokoloff F. Metabolites of 2-deoxy-[14C]-glucose in plasma and brain: influence on rate of glucose utilization determined with deoxyglucose method in rat brain. J Cereb Blood Flow Metab. 1993; 13:315.

    CAS  PubMed  Google Scholar 

  • Dilsizian V, Rocco TP, Freedman NMT, et al. Enhanced detection of ischemic but viable myocardium by the reinjection of thallium and stress-redistribution imaging. N Engl J Med. 1990; 323:141.

    Article  CAS  PubMed  Google Scholar 

  • Early PJ, Sodee DB, eds. Principles and Practice of Nuclear Medicine. 2nd ed. St. Louis: Mosby; 1995.

    Google Scholar 

  • Freeman LM, ed. Freeman and Johnson’s Clinical Radionuclide Imaging. 3rd ed. New York: Grune & Stratton; 1984.

    Google Scholar 

  • Gould KL, Yoshida K, Hess MJ, et al. Myocardial metabolism of fluorodeoxyglucose compared to cell membrane integrity for the potassium analogue rubidium-82 for assessing infarct size in man by PET. J Nucl Med. 1991; 32:1.

    CAS  PubMed  Google Scholar 

  • Harbert J, Eckelman WC, Neumann RD, eds. Nuclear Medicine: Diagnosis and Therapy. New York: Thieme Medical; 1996.

    Google Scholar 

  • Hauser W, Atkins HL, Nelson KG, et al. Technetium-99m-DTPA: a new radiopharmaceutical for brain and kidney imaging. Radiology. 1970; 94:679.

    CAS  PubMed  Google Scholar 

  • Henkin RE, Boles MA, Dillehay GL, et al., eds. Nuclear Medicine. St Louis: Mosby; 1996.

    Google Scholar 

  • Higley B, Smith FW, Smith T, et al. Technetium-99m-1,2-bis[bis(2-ethoxyethyl)-phosphino]ethane: human biodistribution, dosimetry and safety of a new myocardial perfusion imaging agent. J Nucl Med. 1993; 34:30.

    CAS  PubMed  Google Scholar 

  • Johnson LL, Seldin DW. Clinical experience with technetium-99m teboroxime, a neutral, lipophilic myocardial perfusion imaging agent. Am J Cardiol. 1990; 66: 63E.

    Article  CAS  PubMed  Google Scholar 

  • Kiat H, Berman DS, Maddahi J, et al. Late reversibility of tomographic myocardial Tl-201 defects: an accurate marker of myocardial viability. J Am Coll Cardiol. 1988; 12(6):1456.

    Article  CAS  PubMed  Google Scholar 

  • Kuhl DE, Barrio JR, Huang SC, et al. Quantifying local cerebral blood flow by N-isopropyl-p-123I-iodoamphetamine (IMP) tomography. J Nucl Med. 1982; 236:196.

    Google Scholar 

  • Leveille J, Demonceau G, DeRoo M, et al. Characterization of technetium-99m-L,L-ECD for brain perfusion imaging, Part 2: Biodistribution and brain imaging in humans. J Nucl Med. 1989; 30:1902.

    CAS  PubMed  Google Scholar 

  • Maisey MN, Britton KE, Collier BD. Clinical Nuclear Medicine. 3rd ed. London: Chapman & Hall; 1998.

    Google Scholar 

  • McAfee JG, Grossman ZD, Gagne G, et al. Comparison of renal extraction efficiencies for radioactive agents in the normal dog. J Nucl Med. 1981; 22:333.

    CAS  PubMed  Google Scholar 

  • Mejia AA, Nakamura T, Masatoshi I, et al. Estimation of absorbed dose in humans due to intravenous administration of fluorine-18-fluorodeoxyglucose in PET studies. J Nucl Med. 1991; 32:699.

    CAS  PubMed  Google Scholar 

  • Mettler FA Jr, Guiberteau MJ. Essentials of Nuclear Medicine Imaging. 4th ed. Philadelphia: Saunders; 1998.

    Google Scholar 

  • Murray IPC, Ell PJ. Nuclear Medicine in Clinical Diagnosis and Treatment. 2nd ed. Edinburgh: Churchill Livingstone; 1998.

    Google Scholar 

  • Narra RK, Nunn AD, Kuczynski, et al. A neutral technetium-99m complex for myocardial imaging. J Nucl Med. 1989; 30:1830.

    CAS  PubMed  Google Scholar 

  • Phelps ME, Hoffman EJ, Selin C, et al. Investigation of F-18-fluoro-2-deoxyglucose for the measure of myocardial glucose metabolism. J Nucl Med. 1978; 19:1311.

    CAS  PubMed  Google Scholar 

  • Ruhlmann J, Oehr P, Biersack HJ, eds. PET in Oncology. Basics and Clinical Applications. Heidelberg: Springer Verlag; 1999.

    Google Scholar 

  • Saha GB, Go RT, MacIntyre WJ, et al. Use of 82Sr/82Rb generator in clinical PET studies. Nucl Med Biol. 1990; 17:763.

    CAS  Google Scholar 

  • Saha GB, MacIntyre WJ, Brunken RC, et al. Present assessment of myocardial viability by nuclear imaging. Semin Nucl Med. 1996; 26:315.

    CAS  PubMed  Google Scholar 

  • Sandler MP, Coleman RE, Walkers FJT, et al., eds. Diagnostic Nuclear Medicine. 3rd ed. Baltimore: Williams and Wilkins; 1996.

    Google Scholar 

  • Sapirstein LA, Vigt DG, Mandel MJ, et al. Volumes of distribution and clearances of intravenously injected creatinine in the dog. Am J Physiol. 1955; 181:330.

    CAS  PubMed  Google Scholar 

  • Schelbert HR, Phelps ME, Huang SC, et al. N-13 ammonia as an indicator of myocardial blood flow. Circulation. 1981; 63:1259.

    CAS  PubMed  Google Scholar 

  • Sharp PF, Smith FW, Gemmell HG, et al. Technetium-99m HMPAO stereoisomers as potential agents for imaging regional cerebral blood flow: human volunteer studies. J Nucl Med. 1986; 27:171.

    CAS  PubMed  Google Scholar 

  • Sisson JC, Shapiro B, Meyers L, et al. Metaiodobenzylguanidine to map scintigraphically the adrenergic nervous system in man. J Nucl Med. 1987; 28:1625.

    CAS  PubMed  Google Scholar 

  • Skehan SJ, White JF, Evans JW, et al. Mechanism of accumulation of 99mTc-sulesomab in inflammation. J Nucl Med. 2003; 44:11.

    CAS  PubMed  Google Scholar 

  • Subramanian G, McAfee JG, Blair RJ, et al. Technetium 99m methylene diphosphonate—a superior agent for skeletal imaging; comparison with other technetium complexes. J Nucl Med. 1975; 16:744.

    CAS  PubMed  Google Scholar 

  • Taylor A Jr, Eshima D, Christian PE, et al. Technetium-99m kit formulation; preliminary results in normal volunteers and patients with renal failure. J Nucl Med. 1988; 29:616.

    PubMed  Google Scholar 

  • Taylor A Jr, Eshima D, Fritzberg AR, et al. Comparison of iodine-131 OIH and technetium-99m MAG3 renal imaging in volunteers. J Nucl Med. 1986; 27:795.

    PubMed  Google Scholar 

  • Vallabhajosula S, Zimmerman RE, Pickard M, et al. Technetium-99m ECD: a new brain imaging agent. In vivo kinetics and biodistribution studies in normal human studies. J Nucl Med. 1989; 30:599.

    CAS  PubMed  Google Scholar 

  • Vanzetto G, Fagret D, Pasqualini R, et al. Biodistribution, dosimetry, and safety of myocardial perfusion imaging agent 99mTc-N-NOET in healthy volunteers. J Nucl Med. 2000; 41:141.

    CAS  PubMed  Google Scholar 

  • Virkamaki A, Rissanen E, Hamalainen S. Incorporation of [3-sup3H]glucose and 2-[1-sup14C]deoxyglucose into glycogen in heart and skeletal muscle in vivo: Implications for the quantitation of tissue glucose uptake. Diabetes. 1997; 46:1106.

    CAS  PubMed  Google Scholar 

  • Wackers FJT, Berman DS, Maddahi J, et al. Technetium-99m hexakis 2-methoxy-isobutyl isonitrile: human biodistribution, dosimetry, safety and preliminary comparison to thallium-201 for myocardial perfusion imaging. J Nucl Med. 1989; 30:301.

    CAS  PubMed  Google Scholar 

  • Wagner HN, Jr, Szabo Z, Buchanan JW. Principles of Nuclear Medicine. 2nd ed. Philadelphia: Saunders; 1995.

    Google Scholar 

  • Weiner RE. The mechanism of 67Ga localization in malignant disease. Nucl Med Biol. 1996; 23:745.

    Article  CAS  PubMed  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

(2004). Diagnostic Uses of Radiopharmaceuticals in Nuclear Medicine. In: Fundamentals of Nuclear Pharmacy. Springer, New York, NY. https://doi.org/10.1007/0-387-21702-9_13

Download citation

  • DOI: https://doi.org/10.1007/0-387-21702-9_13

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-40360-1

  • Online ISBN: 978-0-387-21702-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics