Skip to main content

Holography and Speckle Techniques Applied to Nondestructive Measurement and Testing

  • Chapter

9.4 Conclusions

Holographic interferometry is a valuable tool for strain and vibration analysis and for defect detection. Several optical configurations for achieving holographic interference have been discussed with special emphasis on various approaches in which the basic technique can be implemented. The powerful potential of holographic interferometry should be apparent to the reader from the few selected examples of measurements and applications of the technique in engineering and sciences. The description of holographic interferometry has been appended with a brief discussion on speckle photography, digital speckle pattern interferometry, and digital speckle shearing pattern, including examples of measurements and applications of these techniques.

Unprecedented growth in computer technology and related digital processing techniques have provided an undeniable advantage to holographic and speckle techniques in the way of their simplicity of use, and rapid and real-time display of whole-field phase maps accompanied by fast quantitative evaluation of these contours. Given these powerful attributes, we can confidently expect holographicand speckle techniques to not only continue to grow and develop, but also to have a major impact in tasks related to measurements, inspection, and verification of computer codes in a wide range of applications in engineering and scientific fields.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.K. Erf, Holographic Non-Destructive Testing, (Academic, New York, 1974).

    Google Scholar 

  2. C.M. Vest, Holographic Interferometry, (Interscience, New York, 1979).

    Google Scholar 

  3. Y.I. Ostrovsky, M.M. Butusov, and G.V. Ostrovskaya, Interferometry by Holography, (Springer-Verlag, Berlin, 1980).

    Google Scholar 

  4. W. Schumann, and M. Dubas, Holographic Interferometry, (Springer-Verlag, Berlin, 1979).

    Google Scholar 

  5. W. Schumann, J.-P. Zürcher, and D. Cuche, Holography and Deformation Analysis, (Springer-Verlag, Berlin, 1985).

    Google Scholar 

  6. R. Jones and C. Wykes Holographic and Speckle Interferometry, 2nd ed, (Cambridge University Press, Cambridge, 1989).

    Google Scholar 

  7. Y.I. Ostrovsky, V.P. Schepinov, and V.V. Yakovlev, Holographic Interferometry in Experimental Analysis, (Springer Verlag, Berlin, 1991).

    Google Scholar 

  8. P.K. Rastogi, Holographic Interferometry-Principles and Methods, (Springer-Verlag, Berlin, 1994).

    Google Scholar 

  9. T. Kreis, Holographic Interferometry-Principles and Methods, (Akademie Verlag, Berlin: 1996).

    Google Scholar 

  10. M. Francon, Laser Speckle and Application to Optics, Academic Press, (New York, 1979).

    Google Scholar 

  11. R.K. Erf, Speckle Metrology, Academic Press, (New York, 1978).

    Google Scholar 

  12. J.C. Dainty, Laser Speckle and Related Phenomenon, 2nd ed. (Springer Verlag, New York, 1984).

    Google Scholar 

  13. R.S. Sirohi, Speckle Metrology, (Marcel Dekker, New York, 1993).

    Google Scholar 

  14. D. Malacara, Optical Shop Testing, (Wiley, New York, 1992).

    Google Scholar 

  15. D.C. Williams, Optical Methods in Engineering Metrology, (Chapman and Hall, London, 1993).

    Google Scholar 

  16. G. Cloud, Optical Methods of Engineering Analysis, (Cambridge University Press, London, 1994).

    Google Scholar 

  17. P. K Rastogi, Optical Measurement Techniques and Applications, (Artech House, London, 1997).

    Google Scholar 

  18. P.K. Rastogi, Photomechanics, Topics in Applied Physics, Vol. 77 (Springer-Verlag, Berlin, 2000).

    Google Scholar 

  19. R.S. Sirohi and K.D. Hinsch, Selected Papers on Holographic Interferometry—Principles and Techniques, SPIE Milestone Series V MS 144 (1998).

    Google Scholar 

  20. P. Hariharan, Optical Holography, (Cambridge University Press, London, 1985), Chap. 7.

    Google Scholar 

  21. R.C. Troth, and J.C. Dainty, “Holographic Interferometry using Anisotropic Self-Diffraction in Bi12SiO20,” Opt. Lett. 16, 53–55 (1991).

    Article  ADS  Google Scholar 

  22. A. Hafiz, R. Magnusson, J.S. Bagby, D.R. Wilson, and T.D. Black, “Visualization of aerodynamic flow fields using photorefractive crystals,” Appl. Opt. 28, 1521–1524 (1989).

    Article  ADS  Google Scholar 

  23. R. Dändliker, “Two-reference-beam holographic interferometry,” in Holographic Interferometry-Principles and Methods, P.K. Rastogi, ed., (Springer-Verlag, Berlin 1994), Chap. 4.

    Google Scholar 

  24. U. Schnars and W. Jüptner ”Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt., 33, 179–181 (1994).

    Article  ADS  Google Scholar 

  25. G. Pedrini, Y.L. Zou, and H.J. Tiziani, “Digital double pulse holographic interferometry for vibration analysis,” J. Modern Opt. 42, 367–374 (1995).

    Article  ADS  Google Scholar 

  26. E. Marquardt and J. Richter, “Digital image holography,” Opt. Eng., 37, 1514–1519 (1998).

    Article  ADS  Google Scholar 

  27. T.M. Kreis, W.P.O. Juptner, and J. Geldmacher, “Digital holography: Methods and applications,” Proc SPIE 3407, 169–177 (1998).

    Article  ADS  Google Scholar 

  28. K. Creath, “Phase-measurement interferometry techniques,” in Progress in Optics, XXVI, E. Wolf, ed., (North-Holland, Amsterdam, 1988), Chap. V, 349–393.

    Google Scholar 

  29. J.E. Greivenkamp and J.H. Bruning, “Phase shifting interferometry,” in Optical Shop Testing, 2nd ed., D. Malacara, ed., (Wiley, New York, 1992).

    Google Scholar 

  30. D.W. Robinson and G.T. Reid, Interferogram Analysis; Digital Fringe Pattern Measurement Techniques, (IOP publications, Bristol, U.K., 1993).

    Google Scholar 

  31. K.A. Stetson and W.R. Brohinsky, “Fringe shifting technique for numerical analysis of time average holograms of vibrating object,” J. Opt. Soc. Am. A, 5, 1472 (1988).

    Article  ADS  Google Scholar 

  32. K.A. Stetson and W.R. Brohinsky, “Electro-optic holography and its application to hologram interferometry,” App. Opt., 24, 3631–3637 (1985).

    Article  ADS  Google Scholar 

  33. S.M. Tieng and W.Z. Lai, “Temperature measurement of reacting flowfield by phase-shifting holographic interferometry,” J. Thermophys. Heat Transfer, 6, 445–451 (1992).

    Article  ADS  Google Scholar 

  34. T.A.W.M. Lanen, “Digital holographic interferometry in flow research,” Opt. Comm. 79, 386–396 (1990).

    Article  ADS  Google Scholar 

  35. X. Colonna de Lega, “Continuous deformation measurement using dynamic phase-shifting and wavelet transforms,” Proc. Conf. App. Opt. Optoelectron., K.T.V. Grattan, ed., Institute of Physics, 261–267 (1996).

    Google Scholar 

  36. P. Jacquot, M. Lehmann, X. Colonna de Lega, “Deformation analysis of a communication telescope structure under non-uniform heating using holographic interferometry,” Proc. SPIE, 3293, 102–113 (1998).

    Article  ADS  Google Scholar 

  37. C.A. Sciammarella, P.K. Rastogi, P. Jacquot, and R. Narayanan, “Holographic-moiré in real time,” Experimental Mechanics, 22, 52–63 (1982).

    Article  Google Scholar 

  38. P.K. Rastogi, “Holographic in-plane measurement using reference-wave reconstruction: Phase stepping and application to a deformation problem,” Appl. Opt. 34, 7194–7196 (1995).

    Article  ADS  Google Scholar 

  39. L. Pirodda, “Conjugate wave holographic interferometry for the measurement of inplane deformations,” Appl. Opt. 26, 1842–1844 (1989).

    Article  ADS  Google Scholar 

  40. P.K. Rastogi, and E. Denarié, “Visualization of in-plane displacement fields by using phase-shifting holographic moiré: Application to crack detection and propagation,” Appl. Opt., 31, 2402–2404 (1992).

    Article  ADS  Google Scholar 

  41. D.B. Neumann, “Comparative holography: A technique for eliminating background fringes in holographic interferometry,” Opt. Eng. 24, 625–627 (1985).

    Google Scholar 

  42. Z. Füzessy, and F. Gyimesi, “Difference holographic interferometry: Technique for optical comparison,” Opt. Eng. 32, 2548–2556 (1993).

    Article  ADS  Google Scholar 

  43. P.K. Rastogi, “Comparative holographic interferometry: A nondestructive inspection system for detection of flaws,” Experimental Mechanics 25, 325–337 (1985)

    Article  ADS  Google Scholar 

  44. P.K. Rastogi, “Comparative phase shifting holographic interferometry,” Appl. Opt., 30, 722–728 (1991).

    Article  ADS  Google Scholar 

  45. P.K. Rastogi, “Direct and real-time holographic monitoring of relative changes in two random rough surfaces,” Physical Review A, 50, 1906–1908 (1994).

    Article  ADS  Google Scholar 

  46. P.K. Rastogi, “Visualization and measurement of slope and curvature fields using holographic interferometry: An application to flaw detection,” J. Modern Opt., 38, 1251–1263 (1991).

    Article  ADS  Google Scholar 

  47. C.S. Vikram, “Study of vibrations,” in Holographic Interferometry-Principles and Methods, P.K. Rastogi, ed., (Springer-Verlag, Berlin, 1994), Chap. 8.

    Google Scholar 

  48. K.A. Stetson, and W.R. Brohinsky, “Electro-optic holography system for vibration analysis and nondestructive testing,” Opt. Eng. 26, 1234–1239 (1987).

    ADS  Google Scholar 

  49. R.J. Pryputniewicz, and K.A. Stetson, “Measurement of vibration patterns using electro-optic holography,” Proc. SPIE, 1162, 456–467 (1989).

    ADS  Google Scholar 

  50. M.A. Beek, “Pulsed holographic vibration analysis on high-speed rotating objects: Fringe formation, recording techniques, and practical applications,” Opt. Eng., 31, 553–561 (1992).

    Article  ADS  Google Scholar 

  51. W. Merzkirch, Flow Visualization, (Academic Press, New York, 1987).

    MATH  Google Scholar 

  52. R.J. Parker and D.G. Jones, “The use of holographic Interferometry for turbomachinery fan evaluation during rotating tests,” J. Turbomachinery, 110, 393–399 (1988).

    Article  Google Scholar 

  53. S.P. Sharma and S.M. Ruffin, “Density measurements in an expanding flow using holographic interferometry,” J. Thermophysics Heat Transfer, 7, 261–268 (1993).

    Article  ADS  Google Scholar 

  54. P.K. Rastogi and L. Pflug, “A fresh approach of phase management to obtain customized contouring of diffuse object surfaces of broadly varying depths using real-time holographic interferometry,” J. Modern Opt. 37, 1233–1246 (1990).

    Article  ADS  Google Scholar 

  55. P.K. Rastogi and L. Pflug, “Novel concept for obtaining continuously variable topographic contour mapping using holographic interferometry,” Appl. Opt., 29, 4392–4402 (1990).

    Article  ADS  Google Scholar 

  56. P.K. Rastogi and L. Pflug, “A holographic technique featuring broad range sensitivity to contour diffuse objects,” J. Modern Opt. 38, 1673–1683 (1991).

    Article  ADS  Google Scholar 

  57. P. Carelli, D. Paoletti, and G.S. Spagnolo, “Holographic contouring method: Application to automatic measurements of surface defects in artwork,” Opt. Eng. 30, 1294–1298 (1991).

    Article  ADS  Google Scholar 

  58. P.K. Rastogi and L. Pflug, “Measurement of large out-of-plane displacements using two source holographic interferometry,” J. Modern Opt. 41, 589–594 (1994).

    Article  ADS  Google Scholar 

  59. P.K. Rastogi, “A multiple sources holographic technique for the measurement of slope change of a three-dimensional object,” J. Modern Opt. 40, 2389–2397 (1993).

    Article  ADS  Google Scholar 

  60. R.S. Sirohi, Selected Papers on Speckle Metrology, SPIE Milestone Series, MS 35, (SPIE Optical Engineering Press, Washington, 1991).

    Google Scholar 

  61. P. Meinlschmidt, K.D. Hinsch, and R.S. Sirohi, Selected papers on Speckle Pattern Interferometry-Principles and Practice, SPIE Milestone series, MS 132, (SPIE Optical Engineering Press, Washington, 1996).

    Google Scholar 

  62. P.K. Rastogi, ed., Special Issue on Speckle and Speckle Shearing Interferometry-1, Opt. Lasers Eng. 26, 83–278 (1997).

    Google Scholar 

  63. P.K. Rastogi, Guest Editor, Special Issue on Speckle and Speckle Shearing Interferometry—2, Optics & Lasers in Engineering, 26,Nos. 4-5, p. 279–460, 1997.

    Google Scholar 

  64. P.K. Rastogi, “Speckle shearing photography-A tool for direct measurement of surface strains,” Appl. Opt., 37, 1292–1298 (1998).

    Article  ADS  Google Scholar 

  65. A.J. Moore, J.R. Tyrer, and F.M. Santoyo, “Phase extraction from electronic speckle pattern interferometry,” Appl. Opt. 33, 7312–7320 (1994).

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Rastogi, P.K. (2002). Holography and Speckle Techniques Applied to Nondestructive Measurement and Testing. In: Ludman, J., Caulfield, H.J., Riccobono, J. (eds) Holography for the New Millennium. Springer, New York, NY. https://doi.org/10.1007/0-387-21693-6_10

Download citation

  • DOI: https://doi.org/10.1007/0-387-21693-6_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95334-2

  • Online ISBN: 978-0-387-21693-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics