Fingerprint Image Compression and the Wavelet Scalar Quantization Specification

  • Remigius Onyshczak
  • Abdou Youssef

Abstract

Due to the large number and size of fingerprint images, data compression has to be applied to reduce the storage and communication bandwidth requirements of those images. In response to this need, the FBI developed a fingerprint compression specification, called the wavelet scalar quantization (WSQ). As the name suggests, the specification is based on wavelet compression. In this chapter, we review the WSQ specification and discuss its most important theoretical and practical underpinnings. In particular, we present the way wavelet compression generally works and address the choice of the wavelet, the structure of the subbands, the different quantizations of the various subbands, and the entropy coding of the quantized data. The performance of the WSQ is addressed as well.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antonini, M., M. Barlaud, P. Mathieu, and I. Daubechies, Image coding using wavelet transform, IEEE Trans. on Image Processing, 1(2): 205–220, April 1992.CrossRefGoogle Scholar
  2. 2.
    Barnsley, M. F. and L. P. Hurd, Fractal Image Compression, Wellesley, MA: AK Peters, 1993.Google Scholar
  3. 3.
    Bradley, J., C. Brislawn, and H. Topper, The FBI wavelet/scalar quatization standard for fingerprint image compression, Proc. SPIE, 1961: 293–304, Orlando, FL, 1993.Google Scholar
  4. 4.
    Brislawn, C., Fingerprints go digital, Notices American Mathematical Society, 42: 1278–1283, 1995Google Scholar
  5. 5.
    Brislawn, C., J. Bradley, R. Onyshczak, and H. Topper, The FBI compression standard for digitized fingerprint images, Proc. SPIE, 2847, 344–355, Denver, CO, Aug. 1996.Google Scholar
  6. 6.
    Chui, C. K., An Introduction to Wavelets, Cambridge, MA: Academic Press, 1992.Google Scholar
  7. 7.
    Clarke, R. J., Transform Coding of Images, London: Academic Press, 1985.Google Scholar
  8. 8.
    MPEG-4: Coding of moving pictures and audio, ISO/IEC 14496, 1999.Google Scholar
  9. 9.
    Coifman, R. R. and M. V. Wickerhauser, Entropy-based algorithms for best basis selection, IEEE Trans. Info. Theory, 38(2): 713–718, Mar. 1992.Google Scholar
  10. 10.
    Daubechies, I., Ten Lectures on Wavelets, Philadelphia: Society for Industrial and Applied Mathematics, 1992.Google Scholar
  11. 11.
    Ersoy, I., F. Ercal, and M. Gokmen, A model-based approach for compression of fingerprint images, Proc. IEEE Intl. Conf. on Image Processing, ICIP’99, Kobe, Oct. 1999, 2: 973–977.Google Scholar
  12. 12.
    FBI, WSQ Gray-Scale Fingerprint Image Compression Specification, Standard IAFIS-IC-0110v2, Criminal Justice Information Services, 1993.Google Scholar
  13. 13.
    Gersho, A., Quantization, IEEE Communications Magazine, 15, Sept. 1977.Google Scholar
  14. 14.
    Gersho, A. and R. M. Gray, Vector Quantization and Signal Compression, Norwell, MA: Kluwer Academic Publishers, 1991.Google Scholar
  15. 15.
    Gokmen, M., I. Ersoy, and A.K. Jain, Compression of fingerprint images using hybrid image model, Proc. IEEE Intl. Conf. on Image Processing, ICIP’96, Lausanne, 1996, Vol. III, 395–398.Google Scholar
  16. 16.
    Huffman, D. A., A method for the reconstruction of minimum redundancy codes, Proc. IRE, 40:1098–1101, 1951.Google Scholar
  17. 17.
    Lloyd, S. P., Least squares quantization in PCM, IEEE Trans. on Information Theory, IT-28: 127–135, 1982.MathSciNetGoogle Scholar
  18. 18.
    Lyons, R. G., Understanding Digital Signal Processing, Reading, MA: Addison-Wesley, 1996.Google Scholar
  19. 19.
    Mallat, S.G., A theory for multiresolution signal decomposition: The wavelet representation, IEEE Trans. on Pattern Analysis and Machine Intelligence, 674–693, July 1989.Google Scholar
  20. 20.
    Pennebaker, B. and J. L. Mitchell, JPEG Still Image Data Compression Standard, New York: Van Nostrand Reinhold, 1993.Google Scholar
  21. 21.
    Rao, K. R. and P. Yip, Discrete Cosine Transform-Algorithms, Advantages and Applications, New York: Academic Press, 1990.Google Scholar
  22. 22.
    Sweldens, W., The lifting scheme: Construction of second generation wavelets, SIAM J. Math. Anal., 29(2): 511–546, 1997.MathSciNetGoogle Scholar
  23. 23.
    Tanaka, H. and A. Leon-Garcia, Efficient run-length encoding, IEEE Trans. Info. Theory, IT-28(6): 880–890, 1987.Google Scholar
  24. 24.
    Taubman, D. S. and M. W. Marcellin, JPEG 2000: Image Compression Fundamentals, Standards, and Practice, New York: Kluwer International Series in Engineering and Computer Science, Nov. 2001.Google Scholar
  25. 25.
    Tewfik, A. H., D. Sinha, and P. Jorgensen, On the optimal choice of a wavelet for signal representation, IEEE Trans. Info. Theory, 38(2):747–765, 1992.Google Scholar
  26. 26.
    Rissanen, J. and G Langdon, Arithmetic coding, IBM J. Res. Develop. 23:149–162, Mar. 1979. Also in IEEE Trans. Comm., COM-29(6):858-867, June 1981.Google Scholar
  27. 27.
    Sayood, K., Introduction to Data Compression, San Fransisco: Morgan Kauffmann Publishers, 1996.Google Scholar
  28. 28.
    Shapiro, J. M., Embedded image coding using zerotrees of wavelet coefficients, IEEE Trans. on Signal Processing, 41(12): 3445–3462, 1993.CrossRefMATHGoogle Scholar
  29. 29.
    Srikanth, S. and N.N. Murthy, Adapting JPEG to fingerprint images, Criminal Justice Information Services Technology Symposium (CJISTS’93), sponsored by Federal Bureau of Investigation and National Institute of Standards And Technology, Gaithersburg, MD, 1993.Google Scholar
  30. 30.
    Vaidayanathan, P. P., Multirate Systems and Filter Banks, Englewood Cliffs, NJ: Prentice Hall, 1993.Google Scholar
  31. 31.
    Vetterli, M. and J. Kovacevic, Wavelets and Subband Coding, Englewood Cliffs, NJ: Prentice Hall, 1993.Google Scholar
  32. 32.
    Villasenor, J., B. Belzer, and J. Liao, Wavelet filter evaluation for efficient image compression, IEEE Trans. on Image Processing, (4):1053–1060, 1995.CrossRefGoogle Scholar
  33. 33.
    Woods, J. W. and S. D. O’Neal, Subband coding of images, IEEE Trans. Acous. Speech Signal Processing, ASSP-34(5):1278–1288, 1986.Google Scholar
  34. 34.
    Youssef, A., Selection of good biorthogonal wavelets for data compression, International Conference on Imaging, Science, Systems, and Technology, CISST’ 97, Las Vegas, pp. 323–330, June 1997.Google Scholar
  35. 35.
    Ziv, J. and A. Lempel, Compression of individual sequences via variable rate coding, IEEE Trans. Info. Theory, IT-24:530–536, 1978.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 2004

Authors and Affiliations

  • Remigius Onyshczak
  • Abdou Youssef

There are no affiliations available

Personalised recommendations