Skip to main content

Fingerprint Image Compression and the Wavelet Scalar Quantization Specification

  • Chapter

Abstract

Due to the large number and size of fingerprint images, data compression has to be applied to reduce the storage and communication bandwidth requirements of those images. In response to this need, the FBI developed a fingerprint compression specification, called the wavelet scalar quantization (WSQ). As the name suggests, the specification is based on wavelet compression. In this chapter, we review the WSQ specification and discuss its most important theoretical and practical underpinnings. In particular, we present the way wavelet compression generally works and address the choice of the wavelet, the structure of the subbands, the different quantizations of the various subbands, and the entropy coding of the quantized data. The performance of the WSQ is addressed as well.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antonini, M., M. Barlaud, P. Mathieu, and I. Daubechies, Image coding using wavelet transform, IEEE Trans. on Image Processing, 1(2): 205–220, April 1992.

    Article  Google Scholar 

  2. Barnsley, M. F. and L. P. Hurd, Fractal Image Compression, Wellesley, MA: AK Peters, 1993.

    Google Scholar 

  3. Bradley, J., C. Brislawn, and H. Topper, The FBI wavelet/scalar quatization standard for fingerprint image compression, Proc. SPIE, 1961: 293–304, Orlando, FL, 1993.

    Google Scholar 

  4. Brislawn, C., Fingerprints go digital, Notices American Mathematical Society, 42: 1278–1283, 1995

    Google Scholar 

  5. Brislawn, C., J. Bradley, R. Onyshczak, and H. Topper, The FBI compression standard for digitized fingerprint images, Proc. SPIE, 2847, 344–355, Denver, CO, Aug. 1996.

    Google Scholar 

  6. Chui, C. K., An Introduction to Wavelets, Cambridge, MA: Academic Press, 1992.

    Google Scholar 

  7. Clarke, R. J., Transform Coding of Images, London: Academic Press, 1985.

    Google Scholar 

  8. MPEG-4: Coding of moving pictures and audio, ISO/IEC 14496, 1999.

    Google Scholar 

  9. Coifman, R. R. and M. V. Wickerhauser, Entropy-based algorithms for best basis selection, IEEE Trans. Info. Theory, 38(2): 713–718, Mar. 1992.

    Google Scholar 

  10. Daubechies, I., Ten Lectures on Wavelets, Philadelphia: Society for Industrial and Applied Mathematics, 1992.

    Google Scholar 

  11. Ersoy, I., F. Ercal, and M. Gokmen, A model-based approach for compression of fingerprint images, Proc. IEEE Intl. Conf. on Image Processing, ICIP’99, Kobe, Oct. 1999, 2: 973–977.

    Google Scholar 

  12. FBI, WSQ Gray-Scale Fingerprint Image Compression Specification, Standard IAFIS-IC-0110v2, Criminal Justice Information Services, 1993.

    Google Scholar 

  13. Gersho, A., Quantization, IEEE Communications Magazine, 15, Sept. 1977.

    Google Scholar 

  14. Gersho, A. and R. M. Gray, Vector Quantization and Signal Compression, Norwell, MA: Kluwer Academic Publishers, 1991.

    Google Scholar 

  15. Gokmen, M., I. Ersoy, and A.K. Jain, Compression of fingerprint images using hybrid image model, Proc. IEEE Intl. Conf. on Image Processing, ICIP’96, Lausanne, 1996, Vol. III, 395–398.

    Google Scholar 

  16. Huffman, D. A., A method for the reconstruction of minimum redundancy codes, Proc. IRE, 40:1098–1101, 1951.

    Google Scholar 

  17. Lloyd, S. P., Least squares quantization in PCM, IEEE Trans. on Information Theory, IT-28: 127–135, 1982.

    MathSciNet  Google Scholar 

  18. Lyons, R. G., Understanding Digital Signal Processing, Reading, MA: Addison-Wesley, 1996.

    Google Scholar 

  19. Mallat, S.G., A theory for multiresolution signal decomposition: The wavelet representation, IEEE Trans. on Pattern Analysis and Machine Intelligence, 674–693, July 1989.

    Google Scholar 

  20. Pennebaker, B. and J. L. Mitchell, JPEG Still Image Data Compression Standard, New York: Van Nostrand Reinhold, 1993.

    Google Scholar 

  21. Rao, K. R. and P. Yip, Discrete Cosine Transform-Algorithms, Advantages and Applications, New York: Academic Press, 1990.

    Google Scholar 

  22. Sweldens, W., The lifting scheme: Construction of second generation wavelets, SIAM J. Math. Anal., 29(2): 511–546, 1997.

    MathSciNet  Google Scholar 

  23. Tanaka, H. and A. Leon-Garcia, Efficient run-length encoding, IEEE Trans. Info. Theory, IT-28(6): 880–890, 1987.

    Google Scholar 

  24. Taubman, D. S. and M. W. Marcellin, JPEG 2000: Image Compression Fundamentals, Standards, and Practice, New York: Kluwer International Series in Engineering and Computer Science, Nov. 2001.

    Google Scholar 

  25. Tewfik, A. H., D. Sinha, and P. Jorgensen, On the optimal choice of a wavelet for signal representation, IEEE Trans. Info. Theory, 38(2):747–765, 1992.

    Google Scholar 

  26. Rissanen, J. and G Langdon, Arithmetic coding, IBM J. Res. Develop. 23:149–162, Mar. 1979. Also in IEEE Trans. Comm., COM-29(6):858-867, June 1981.

    Google Scholar 

  27. Sayood, K., Introduction to Data Compression, San Fransisco: Morgan Kauffmann Publishers, 1996.

    Google Scholar 

  28. Shapiro, J. M., Embedded image coding using zerotrees of wavelet coefficients, IEEE Trans. on Signal Processing, 41(12): 3445–3462, 1993.

    Article  MATH  Google Scholar 

  29. Srikanth, S. and N.N. Murthy, Adapting JPEG to fingerprint images, Criminal Justice Information Services Technology Symposium (CJISTS’93), sponsored by Federal Bureau of Investigation and National Institute of Standards And Technology, Gaithersburg, MD, 1993.

    Google Scholar 

  30. Vaidayanathan, P. P., Multirate Systems and Filter Banks, Englewood Cliffs, NJ: Prentice Hall, 1993.

    Google Scholar 

  31. Vetterli, M. and J. Kovacevic, Wavelets and Subband Coding, Englewood Cliffs, NJ: Prentice Hall, 1993.

    Google Scholar 

  32. Villasenor, J., B. Belzer, and J. Liao, Wavelet filter evaluation for efficient image compression, IEEE Trans. on Image Processing, (4):1053–1060, 1995.

    Article  Google Scholar 

  33. Woods, J. W. and S. D. O’Neal, Subband coding of images, IEEE Trans. Acous. Speech Signal Processing, ASSP-34(5):1278–1288, 1986.

    Google Scholar 

  34. Youssef, A., Selection of good biorthogonal wavelets for data compression, International Conference on Imaging, Science, Systems, and Technology, CISST’ 97, Las Vegas, pp. 323–330, June 1997.

    Google Scholar 

  35. Ziv, J. and A. Lempel, Compression of individual sequences via variable rate coding, IEEE Trans. Info. Theory, IT-24:530–536, 1978.

    MathSciNet  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Onyshczak, R., Youssef, A. (2004). Fingerprint Image Compression and the Wavelet Scalar Quantization Specification. In: Ratha, N., Bolle, R. (eds) Automatic Fingerprint Recognition Systems. Springer, New York, NY. https://doi.org/10.1007/0-387-21685-5_19

Download citation

  • DOI: https://doi.org/10.1007/0-387-21685-5_19

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95593-3

  • Online ISBN: 978-0-387-21685-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics