Advertisement

Range-Dependent Waveguide

Chapter
  • 508 Downloads
Part of the Modern Acoustics and Signal Processing book series (MASP)

Keywords

Normal Mode Sound Velocity Helmholtz Equation Adiabatic Approximation Grazing Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [7.1]
    B.Z. Katzenelenbaum: Teoriya neregularnykh volnovodov s medlenno menyayushimisya parametrami (Theory of Irregular Waveguides with Slowly Varying Parameters) (Izd. Akad. Nauk SSSR, Moscow 1961)Google Scholar
  2. [7.2]
    A.D. Pierce: J. Acoust. Soc. Am. 37, 19–27 (1965)CrossRefADSGoogle Scholar
  3. [7.3]
    D.M. Milder: J. Acoust. Soc. Am. 46, 1259–1263 (1969)CrossRefzbMATHADSGoogle Scholar
  4. [7.4]
    F.S. Chwieroth, R.D. Graves, A. Nagl, H. Uberall, G.L. Zarur: J. Acoust. Soc. Am. 64, 1105–1112 (1978)CrossRefADSzbMATHGoogle Scholar
  5. [7.5]
    D.E. Weston: Proc. Phys. Soc. London 73, 365–384 (1959)zbMATHCrossRefADSGoogle Scholar
  6. [7.6]
    A.V. Vagin, N.V. Gorskaya, A.V. Mikrykov: Voprosy Sudostroenia. Ser. Acoust. (1978) 20–28Google Scholar
  7. [7.7]
    C.H. Harrison: J. Acoust. Soc. Am. 62, 1382–1388 (1977)CrossRefADSMathSciNetGoogle Scholar
  8. [7.8]
    L.M. Brekhovskikh: Waves in Layered Media, 2nd ed. (Academic, New York 1980)zbMATHGoogle Scholar
  9. [7.9]
    R. Burridge, H. Weinberg: “Horizontal Rays and Vertical Modes,” in Wave Propagation and Underwater Acoustics, ed. by J.B. Keller, J.S. Papadakis, Lecture Notes in Physics, Vol. 70 (Springer, Berlin, Heidelberg, New York 1977) pp. 86–152CrossRefGoogle Scholar
  10. [7.10]
    C.H. Harrison: J. Acoust. Soc. Am. 65, 56–61 (1979)CrossRefADSGoogle Scholar
  11. [7.11]
    M.A. Leontovich, V.A. Fock: Zh. Eksp. Teor. Fiz. 16, 557–573 (1946) [English transl.: J. Phys. USSR 10, 13–24 (1946)]MathSciNetGoogle Scholar
  12. [7.12]
    F.D. Tappert: “The Parabolic Approximation Method,” in Wave Propagation and Underwater Acoustics, ed. by J.B. Keller, J.S. Papadakis, Lecture Notes in Physics, Vol. 70 (Springer, Berlin, Heidelberg, New York, 1977), pp. 224–284CrossRefGoogle Scholar
  13. [7.13]
    S.T. McDaniel: J. Acoust. Soc. Am. 57, 307–311 (1975)CrossRefADSGoogle Scholar
  14. [7.14]
    J.A. DeSanto: J. Acoust. Soc. Am. 62, 295–297 (1977)CrossRefADSzbMATHMathSciNetGoogle Scholar
  15. [7.15]
    J.A. DeSanto, R.H. Baer: “Probability Distribution of Intensity for Acoustic Propagation,” Meeting on Sound Propagation and Underwater Systems, Inst. of Acoustics, London 1978 pp. 10–11Google Scholar
  16. [7.16]
    J.A. DeSanto, J.S. Perkins, R.H. Baer: J. Acoust. Soc. Am. 64, 1664–1666 (1978)CrossRefADSGoogle Scholar
  17. [7.17]
    E.A. Polyanski: Akust. Zh. 20, 142–143 (1974)Google Scholar
  18. [7.18]
    J.A. DeSanto: “Theoretical Methods in Ocean Acoustics,” in Ocean Acoustics, ed. by J.A. DeSanto, Topics in Current Physics, Vol. 8 (Springer, Berlin, Heidelberg, New York 1979) pp. 7–77Google Scholar
  19. [7.19]
    I.S. Gradshtein, I.M. Ryzhik: Table of Integrals, Series and Products (Academic, New York 1965)Google Scholar
  20. [A.7.1]
    S.T. McDaniel: J. Acoust. Soc. Am. 72, 916–923 (1982)CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 2003

Personalised recommendations