Skip to main content

Assessing Epidemiological Relations and the Role of Measurement Errors

  • Chapter
Cancer Precursors
  • 226 Accesses

Conclusion

As discussed in this chapter, epidemiologic studies coupled with careful, hypothesis-driven data analysis [45,46] can be useful in providing empirical evidence for the role of intermediate endpoints and cancer precursors in the genesis of cancer, and for the role of susceptibility traits and exposures in the development of cancer precursors. The specification of a priori models that depict the relations among variables and their directionality requires an eclectic consideration of all aspects of disease biology, histopathology, and genetics within the timetested epidemiologic framework for assessing causal mechanisms of disease [47]. However, even the most multidisciplinary molecular epidemiology studies must contend with the impact of measurement error in remote exposure, genetic susceptibility markers, intermediate endpoints, and precursor lesions. Although careful consideration of the possible effects of misclassification of key variables helps our understanding of the nature and degree of the ensuing biases on the measures of association, a preventive approach to minimizing misclassification is a preferred solution. This involves not only the development and validation of better survey instruments and laboratory assays, but also the design of epidemiologic studies that can properly measure the dynamic changes occurring as the early events in the natural history of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rothman KJ. Causes. Am J Epidemiol 1976; 104:587–92.

    PubMed  CAS  Google Scholar 

  2. Rothman KJ, Greenland S. Modern Epidemiology, 2nd Edition. Philadelphia: Lipincott-Raven, 1998, pp. 7–28, 115–34.

    Google Scholar 

  3. Greenland S, Pearl J, Robins JM. Causal diagrams for epidemiologic research. Epidemiology 1999; 10:37–48.

    PubMed  CAS  Google Scholar 

  4. Cann CI, Fried MP, Rothman KJ. Epidemiology of squamous cell cancer of the head and neck. Otolaryngol Clin North Am 1985; 18:367–88.

    PubMed  CAS  Google Scholar 

  5. Schlecht NF, Franco EL, Pintos J, et al. Interaction between tobacco and alcohol consumption and the risk of cancers of the upper aerodigestive tract in Brazil. Am J Epidemiol 1999; 150:1129–37.

    PubMed  CAS  Google Scholar 

  6. Apple RJ, Erlich HA, Klitz W, et al. HLA DR-DQ associations with cervical carcinoma show papillomavirus-type specificity. Nat Genet 1994; 6:157–62.

    Article  PubMed  CAS  Google Scholar 

  7. Storey A, Thomas M, Kalita A, et al. Role of a p53 polymorphism in the development of human Papillomavirus-associated cancer. Nature 1998; 393:229–34.

    PubMed  CAS  Google Scholar 

  8. Zehbe I, Voglino G, Wilander E, et al. Codon 72 polymorphism of p53 and its association with cervical cancer. Lancet 1999; 354:218–9.

    PubMed  CAS  Google Scholar 

  9. Franco EL. The sexually transmitted disease model for cervical cancer: incoherent epidemiologic findings and the role of misclassification of human papillomavirus infection. Epidemiology 1991; 2:98–106.

    PubMed  CAS  Google Scholar 

  10. Franco EL. Cancer causes revisited: human papillomavirus and cervical neoplasia. J Natl Cancer Inst 1995; 87:779–80.

    PubMed  CAS  Google Scholar 

  11. Franco EL, Rohan TE, Villa LL. Epidemiologic evidence and human papillomavirus infection as a necessary cause of cervical cancer. J Natl Cancer Inst 1999; 91:506–11.

    Article  PubMed  CAS  Google Scholar 

  12. Begg CB, Zhang ZF. Statistical analysis of molecular epidemiology studies employing case-series. Cancer Epidemiol Biomarkers Prev 1994; 3:173–5.

    PubMed  CAS  Google Scholar 

  13. Khoury MJ, Flanders WD. Nontraditional epidemiologic approaches in the analysis of gene-environment interaction: case-control studies with no controls. Am J Epidemiol 1996; 144: 207–13.

    PubMed  CAS  Google Scholar 

  14. Goldstein AM, Andrieu N. Detection of interaction involving identified genes: available study designs. J Natl Cancer Inst Monogr 1999; 26: 49–54.

    PubMed  Google Scholar 

  15. Schiffman MH, Bauer HM, Hoover RN, et al. Epidemiologic evidence showing that human papillomavirus infection causes most cervical intraepithelial neoplasia. J Natl Cancer Inst 1993; 85:958–64.

    PubMed  CAS  Google Scholar 

  16. Greenland S. The effect of misclassification in the presence of covariates. Am J Epidemiol 1980; 112:564–9.

    PubMed  CAS  Google Scholar 

  17. Greenland S, Robins JM. Confounding and misclassification. Am J Epidemiol 1985; 122:495–506.

    PubMed  CAS  Google Scholar 

  18. Armstrong BG. Effect of measurement error on epidemiological studies of environmental and occupational exposures. Occup Environ Med 1998; 55:651–6.

    PubMed  CAS  Google Scholar 

  19. Franco EL. Measurement errors in epidemiological studies of human papillomavirus and cervical cancer. In: Muñoz N, Bosch FX, Shah KV, et al. (eds) The epidemiology of human papillomavirus and cervical cancer. Oxford: Oxford University Press, 1992, pp. 181–97.

    Google Scholar 

  20. Franco EL. Statistical issues in studies of human papillomavirus infection and cervical cancer. In: Franco EL, Monsonego J (eds) New developments in cervical cancer screening and prevention. London: Blackwell, 1997, pp. 39–50.

    Google Scholar 

  21. Wynder EL. Investigator bias and interviewer bias: the problem of reporting systematic error in epidemiology. J Clin Epidemiol 1994; 47: 825–7.

    PubMed  CAS  Google Scholar 

  22. Liu XH, Liang KY. Adjustment for non-differential misclassification error in the generalized linear model. Stat Med 1991; 10:1197–211.

    PubMed  CAS  Google Scholar 

  23. Bashir SA, Duffy SW. The correction of risk estimates for measurement error. Ann Epidemiol 1997; 7:154–64.

    Article  PubMed  CAS  Google Scholar 

  24. Emsley CL, Gao S, Hall KS, et al. Estimating odds ratios adjusting for misclassification in Alzheimer’s disease risk factor assessment. Stat Med 2000; 19:1523–30.

    Article  PubMed  CAS  Google Scholar 

  25. Makni H, Franco EL, Kaiano J, et al. p53 polymorphism in codon 72 and risk of human papillomavirus-induced cervical cancer: effect of inter-laboratory variation. Int J Cancer 2000; 87:528–33.

    Article  PubMed  CAS  Google Scholar 

  26. Helland A, Langerod A, Johnsen H, et al. p53 polymorphism and risk of cervical cancer. Nature 1998; 396:530–1.

    Article  PubMed  CAS  Google Scholar 

  27. Josefsson AM, Magnusson PK, Ylitalo N, et al. p53 polymorphism and risk of cervical cancer. Nature 1998; 396:531.

    Article  PubMed  CAS  Google Scholar 

  28. Hildesheim A, Schiffman M, Brinton LA, et al. p53 polymorphism and risk of cervical cancer. Nature 1998; 396:531–2.

    Article  PubMed  CAS  Google Scholar 

  29. Lanham S, Campbell I, Watt P, et al. p53 polymorphism and risk of cervical cancer. Lancet 1998; 352:1631.

    Article  PubMed  CAS  Google Scholar 

  30. Klaes R, Ridder R, Schaefer U, et al. No evidence of p53 allele-specific predisposition in human papillomavirus-associated cervical cancer. J Mol Med 1999; 77:299–302.

    Article  PubMed  CAS  Google Scholar 

  31. Minaguchi T, Kanamori Y, Matsushima M, et al. No evidence of correlation between polymorphism at codon 72 of p53 and risk of cervical cancer in Japanese patients with papillomavirus 16/18 infection. Cancer Res 1998; 58: 4585–6.

    PubMed  CAS  Google Scholar 

  32. Munoz N, Bosch FX, de Sanjose S, et al. Risk factors for cervical intraepithelial neoplasia grade III/carcinoma in situ in Spain and Colombia. Cancer Epidemiol Biomarkers Prev 1993; 2:423–31.

    PubMed  CAS  Google Scholar 

  33. Kjaer SK, van den Brule AJ, Bock JE, et al. Human papillomavirus-the most significant risk determinant of cervical intraepithelial neoplasia. Int J Cancer 1996; 65:601–6.

    PubMed  CAS  Google Scholar 

  34. Reeves WC, Brinton LA, Garcia M, et al. Human papillomavirus infection and cervical cancer in Latin America. N Engl J Med 1989; 320:1437–41.

    PubMed  CAS  Google Scholar 

  35. Donnan SP, Wong FW, Ho SC, et al. Reproductive and sexual risk factors and human papilloma virus infection in cervical cancer among Hong Kong Chinese. Int J Epidemiol 1989; 18:32–6.

    PubMed  CAS  Google Scholar 

  36. Walboomers JMM, Meijer CJLM. Do HPV-negative cervical carcinomas exist? J Pathol 1997; 181:253.

    Article  PubMed  CAS  Google Scholar 

  37. Walboomers JM, Jacobs MV, Manos MM, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 1999; 189:12–19.

    Article  PubMed  CAS  Google Scholar 

  38. Schiffman MH, Schatzkin A. Test reliability is critically important to molecular epidemiology: an example from studies of human papillomavirus infection and cervical neoplasia. Cancer Res 1994; 54(Suppl):1944–7.

    Google Scholar 

  39. Duffy SW, Rohan TE, McLaughlin JR. Design and analysis considerations in a cohort study involving repeated measurement of both exposure and outcome: the association between genital papillomavirus infection and risk of cervical intraepithelial neoplasia. Stat Med 1994; 13:379–90.

    PubMed  CAS  Google Scholar 

  40. Rothman N, Stewart WF, Schulte PA. Incorporating biomarkers into cancer epidemiology: a matrix of biomarker and study design categories. Cancer Epidemiol Biomarkers Prev 1995; 4: 301–11.

    PubMed  CAS  Google Scholar 

  41. Franco E, Villa L, Rohan T, et al. Design and methods of the Ludwig-McGill longitudinal study of the natural history of human papillomavirus infection and cervical neoplasia in Brazil. Panam J Pub Health 1999; 6:223–33.

    CAS  Google Scholar 

  42. Zeger SL, Liang KY. Longitudinal data analysis for discrete and continuous outcomes. Biometrics 1986; 42:121–30.

    PubMed  CAS  Google Scholar 

  43. Zeger SL, Liang KY. An overview of methods for the analysis of longitudinal data. Stat Med 1992; 11:1825–39.

    PubMed  CAS  Google Scholar 

  44. Ho GY, Burk RD, Klein S, et al. Persistent genital human papillomavirus infection as a risk factor for persistent cervical dysplasia. J Natl Cancer Inst 1995; 87:1365–71.

    PubMed  CAS  Google Scholar 

  45. Greenland S. Modeling and variable selection in epidemiologic analysis. Am J Public Health 1989; 79:340–9.

    PubMed  CAS  Google Scholar 

  46. Maldonado G, Greenland S. Simulation study of confounder-selection strategies. Am J Epidemiol 1993; 138:923–36.

    PubMed  CAS  Google Scholar 

  47. Schulte PA, Rothman N, Schottenfeld D. Design considerations in molecular epidemiology. In: Schulte PA, Perera FP (eds) Molecular epidemiology: Principles and practices. San Diego: Academic Press, 1993, pp. 159–98.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Franco, E.L., Rohan, T.E. (2002). Assessing Epidemiological Relations and the Role of Measurement Errors. In: Franco, E.L., Rohan, T.E. (eds) Cancer Precursors. Springer, New York, NY. https://doi.org/10.1007/0-387-21605-7_6

Download citation

  • DOI: https://doi.org/10.1007/0-387-21605-7_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95188-1

  • Online ISBN: 978-0-387-21605-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics