Advertisement

Gain and Phase Control of Compensatory Eye Movements by the Flocculus of the Vestibulocerebellum

  • Chris I. De Zeeuw
  • Sebastiaan K. E. Koekkoek
  • Arjan M. van Alphen
  • Chongde Luo
  • Freek Hoebeek
  • Johannes van der Steen
  • Maarten A. Frens
  • John Sun
  • Hieronymus H. L. M. Goossens
  • Dick Jaarsma
  • Michiel P. H. Coesmans
  • Matthew T. Schmolesky
  • Marcel T. G. De Jeu
  • Niels Galjart
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 19)

Keywords

Purkinje Cell Vestibular Nucleus Medial Vestibular Nucleus Vestibular Nucleus Neuron Unipolar Brush Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alley K, Baker R, Simpson JI (1975) Afferents to the vestibulo-cerebellum and the origin of the visual climbing fibers in the rabbit. Brain Res 98:582–589.PubMedCrossRefGoogle Scholar
  2. André P, Pompeiano O, White SR (1993) Activation of muscarinic receptors induces a long-lasting enhancement of Purkinje cell responses to glutamate. Brain Res 617:28–36.PubMedGoogle Scholar
  3. André P, Fascetti F, Pompeiano O, White SR (1994) The muscarinic agonist, bethanechol, enhances GABA-induced inhibition of Purkinje cells in the cerebellar cortex. Brain Res 637:1–9.PubMedGoogle Scholar
  4. Balkema GW, Mangini NJ, Pinto LH, Vanable JW Jr (1984) Visually evoked eye movements in mouse mutants and inbred strains. A screening report. Invest Ophthalmol Vis Sci 25:795–800.PubMedGoogle Scholar
  5. Barmack NH, Pettorossi VE (1985) Effects of unilateral lesions of the flocculus on optokinetic and vestibuloocular reflexes of the rabbit. J Neurophysiol 53:481–496.PubMedGoogle Scholar
  6. Barmack NH, Simpson JI (1980) Effects of microlesions of dorsal cap of inferior olive of rabbits on optokinetic and vestibuloocular reflexes. J Neurophysiol 43:182–206.PubMedGoogle Scholar
  7. Barmack NH, Baughman RW, Eckenstein FP (1992a) Cholinergic innervation of the cerebellum of rat, rabbit, cat, and monkey as revealed by choline acetyltransferase activity and immunohistochemistry. J Comp Neurol 317:233–249.PubMedGoogle Scholar
  8. Barmack NH, Baughman RW, Eckenstein FP, Shojaku H (1992b) Secondary vestibular cholinergic projection to the cerebellum of rabbit and rat as revealed by choline acetyltransferase immunohistochemistry, retrograde and orthograde tracers. J Comp Neurol 317:250–270.PubMedGoogle Scholar
  9. Barski JJ, Hartmann J, Rose CR, Hoebeek F, Morl K, Noll-Hussong M, Related Articles, Links De Zeeuw CI, Konnerth A, Meyer M (2003) Calbindin in cerebellar Purkinje cells is a critical determinant of the precision of motor coordination. J Neurosci Apr 15;23(8):3469–3477.PubMedGoogle Scholar
  10. Bishop G, Ho RH, King JS (1985) Localization of serotonin immunoreactivity in the opossum cerebellum. J Comp Neurol 15:301–321.Google Scholar
  11. Blanks JC, Bok D (1977) An autoradiographic analysis of postnatal cell proliferation in the normal and degenerative mouse retina. J Comp Neurol 174:317–327.PubMedCrossRefGoogle Scholar
  12. Blanks RH, Precht W (1983) Responses of units in the rat cerebellar flocculus during optokinetic and vestibular stimulation. Exp Brain Res 53(1):1–15.PubMedCrossRefGoogle Scholar
  13. Bloedel JR, Courville J (1981) A review of cerebellar afferent systems. In: Brooks VB (ed) Handbook of Physiology, Volume II. Motor Control. Baltimore: Williams & Wilkins, pp. 725–730.Google Scholar
  14. Bonner TI (1992) Domains of muscarinic acetylcholine receptors that confer specificity of G protein coupling. Trends Pharmacol Sci 13:48–50.PubMedCrossRefGoogle Scholar
  15. Bower JM (1997) Is the cerebellum sensory for motor’s sake, or motor for sensory’s sake: the view from the whiskers of a rat? Prog Brain Res 114:463–496.PubMedGoogle Scholar
  16. Brand S, Dahl AL, Mugnaini E (1976) The length of parallel fibers in the cat cerebellar cortex. An experimental light and electron microscopic study. Exp Brain Res 26(1):39–58.PubMedCrossRefGoogle Scholar
  17. Brooks VB, Thach WT (1981) Cerebellar control of posture and movement. In: Brookhart JM, Mountcastle VB (eds) Handbook of Physiology, Section I: The Nervous System, Volume II: Motor Control. Bethesda, MD: American Physiological Society, pp. 877–946.Google Scholar
  18. Büttner-Ennever JA (1992) Patterns of connectivity in the vestibular nuclei. Ann N Y Acad Sci 656:363–378.PubMedGoogle Scholar
  19. Büttner U, Büttner-Ennever JA (1988) Neuroanatomy of the oculomotor system. Present concepts of oculomotor organization. Rev Oculomot Res 2:3–33.PubMedGoogle Scholar
  20. Caulfield MP (1993) Muscarinic receptors—characterization, coupling and function. Pharmacol Ther 58:319–379.PubMedCrossRefGoogle Scholar
  21. Chen C, Kano M, Chen L, Bao S, Kim JJ, Hashimoto K, Thompson RF, Tonegawa S (1995) Impaired motor coordination correlates with persistent multiple climbing fiber innervation in PKCγ mutant mice. Cell 83:1233–1242.PubMedCrossRefGoogle Scholar
  22. Chubb MC, Fuchs AF (1982) Contribution of y group of vestibular nuclei and dentate nucleus of cerebellum to generation of vertical smooth eye movements. J Neurophysiol 48:75–99.PubMedGoogle Scholar
  23. Cuénod M, Audinat E, Do KQ, Gahwiler BH, Grandes P, Herrling P, Knopfel T, Perschak H, Streit P, Vollenweider F (1990) Homocysteic acid as transmitter candidate in the mammalian brain and excitatory amino acids in epilepsy. Adv Exp Med Biol 268:57–63.PubMedGoogle Scholar
  24. Cummings S, King JS (1990) Coexistence of corticotropin releasing factor and enkephalin in cerebellar afferent systems. Synapse 5:167–174.PubMedCrossRefGoogle Scholar
  25. Daniels PD, Hassul M, Kimm J (1978) Dynamic analysis of the vestibulo-ocular reflex in the normal and flocculectomized chinchilla. Exp Neurol 58:32–45.PubMedCrossRefGoogle Scholar
  26. Delgado-Garcia JM, Vidal PP, Gomez C, Berthoz A (1989) A neurophysiological study of prepositus hypoglossi neurons projecting to oculomotor and preoculo-motor nuclei in the alert cat. Neuroscience 29:291–307.PubMedGoogle Scholar
  27. De Zeeuw CI, Berrebi AS (1995) Postsynaptic targets of Purkinje cell terminals in the cerebellar and vestibular nuclei of the rat. Eur J Neurosci 7:2322–2333.PubMedCrossRefGoogle Scholar
  28. De Zeeuw CI, Koekkoek SKE (1997) Signal processing in the C2-module of the flocculus and its role in head movement control. Prog Brain Res 114:299–321.PubMedGoogle Scholar
  29. De Zeeuw CI, Wentzel PR, Mugnaini E (1993) Fine structure of the dorsal cap of the inferior olive and its GABAergic and non-GABAergic input from the nucleus prepositus hypoglossi in rat and rabbit. J Comp Neurol 327:63–82.PubMedGoogle Scholar
  30. De Zeeuw CI, Gerrits NM, Voogd J, Leonard CS, Simpson JI (1994a) The rostral dorsal cap and ventrolateral outgrowth of the rabbit inferior olive receive a GABAergic input from dorsal group y and the ventral dentate nucleus. J Comp Neurol 341:420–432.PubMedGoogle Scholar
  31. De Zeeuw CI, Wylie DR, DiGiorgi PL, Simpson JI (1994b) Projections of individual Purkinje cells of identified zones in the flocculus to the vestibular and cerebellar nuclei in the rabbit. J Comp Neurol 349:428–448.PubMedGoogle Scholar
  32. De Zeeuw CI, Van den Burg J, Wylie DR, DiGiorgi PL, Ruigrok TJH, Teune T, Simpson JI (1995a) Morphological evidence for interzonal inhibition by Golgi cells in the rabbit vestibulo-cerebellum. Eur J Morphol 33:328–329.Google Scholar
  33. De Zeeuw CI, Wylie DR, Stahl JS, Simpson JI (1995b) Phase relations of Purkinje cells in the rabbit flocculus during compensatory eye movements. J Neurophysiol 74:2051–2064.PubMedGoogle Scholar
  34. De Zeeuw CI, Ruigrok TJH, Hawkins R, van Alphen AM (1997) Climbing fiber collaterals contact neurons in the cerebellar nuclei that provide a GABAergic feedback to the inferior olive. Neuroscience 80:981–987.PubMedGoogle Scholar
  35. De Zeeuw CI, Hansel C, Bian F, Koekkoek SKE, van Alphen A, Linden DJ, Oberdick J (1998) Expression of a protein kinase C inhibitor in Purkinje cells blocks cerebellar long term depression and adaptation of the vestibulo-ocular reflex. Neuron 20:495–508.PubMedGoogle Scholar
  36. Errico P, Barmack NH (1993) Origins of cerebellar mossy and climbing fibers immunoreactive for corticotropin-releasing factor in the rabbit. J Comp Neurol 336(2):307–320.PubMedCrossRefGoogle Scholar
  37. Escudero M, de la Cruz RR, Delgado-Garcia JM (1992) A physiological study of vestibular and prepositus hypoglossi neurones projecting to the abducens nucleus in the alert cat. J Physiol 458:539–560.PubMedGoogle Scholar
  38. Evinger C (1988) Extraocular motor nuclei: location, morphology and afferents. Rev Oculomot Res 2:81–117.PubMedGoogle Scholar
  39. Feil R, Harkmann J, Luo C, Wolfsgruber W, Schilling K, Feil S, Barski J, Meyer M, Konnerkh A, De Zeeuw CI, Hofmann F (2003) Impairment of LTD and cerebellar learning by Puskinge cell-specific ablazion of cGMP-dependent protein kinas I.P. J. Cell Biology, in press.Google Scholar
  40. Frens MA, Mathoera AL, van der Steen J (2001) Floccular complex spike response to transparent retinal slip. Neuron 30:795–801.PubMedCrossRefGoogle Scholar
  41. Gerrits NM, Epema AH, van Linge A, Dalm E (1989) The primary vestibulocerebellar projection in the rabbit: absence of primary afferents in the flocculus. Neurosci Lett 105:27–33.PubMedCrossRefGoogle Scholar
  42. Goossens J, Daniel H, Rancillac A, van der Steen J, Oberdick J, Crepel F, De Zeeuw CI, Frens MA (2001) Expression of protein kinase C inhibitor blocks cerebellar long-term depression without affecting Purkinje cell excitability in alert mice. J Neurosci 21(15):5813–5823.PubMedGoogle Scholar
  43. Graybiel AM, Hartwieg EA (1974) Afferent connections of the oculomotor complex in the cat: an experimental study with tracer techniques. Brain Res 68:167–173.PubMedCrossRefGoogle Scholar
  44. Grüsser-Cornehls U (1995) Responses of flocculus and vestibular nuclei neurons in Weaver mutant mice (B6CBA wv/wv) to combined head and body rotation. Exp Brain Res 107:26–33.PubMedGoogle Scholar
  45. Grüsser-Cornehls U, Bohm P (1988) Horizontal optokinetic ocular nystagmus in wildtype (B6CBA+/+) and weaver mutant mice. Exp Brain Res 72:29–36.PubMedCrossRefGoogle Scholar
  46. Grüsser-Cornehls U, Niemschynski A, Plassman W (1995) Vestibular responses of flocculus and vestibular nuclei neurons in mice (B6cBA). Exp Brain Res 107:17–25.PubMedGoogle Scholar
  47. Hasson T, Gillespie PG, Garcia JA, MacDonald RB, Zhao Y, Yee AG, Mooseker MS, Corey DP (1997) Unconventional myosins in inner-ear sensory epithelia. J Cell Biol 137:1287–1307.PubMedCrossRefGoogle Scholar
  48. Heckroth JA, Eisenman LM (1991) Olivary morphology and olivocerebellar topography in adult lurcher mutant mice. J Comp Neurol 312:641–651.PubMedCrossRefGoogle Scholar
  49. Hess EJ (1996) Identification of the weaver mouse mutation: the end of the beginning. Neuron 16:1073–1076.PubMedCrossRefGoogle Scholar
  50. Hess BJ, Blanks RH, Lannou J, Precht W (1989) Effects of kainic acid lesions of the nucleus reticularis tegmenti pontis on fast and slow phases of vestibuloocular and optokinetic reflexes in the pigmented rat. Exp Brain Res 74(1):63–79.PubMedCrossRefGoogle Scholar
  51. Highstein SM (1973) Synaptic linkage in the vestibulo-ocular and cerebellovestibular pathways to the VIth nucleus in the rabbit. Exp Brain Res 17(3): 301–314.PubMedGoogle Scholar
  52. Highstein SM, Ito M, Tsuchiya T (1971) Synaptic linkage in the vestibulo-ocular reflex pathway of rabbit. Exp Brain Res 113(3):306–326.PubMedGoogle Scholar
  53. Highstein SM, Reisine H (1979) Synaptic and functional organization of vestibuloocular reflex pathways. Prog Brain Res 50:431–442.PubMedGoogle Scholar
  54. Highstein SM, Partsalis A, Arikan R (1997) Role of the Y-group of the vestibular nuclei and flocculus of the cerebellum in motor learning of the vestibulo-ocular reflex. Prog Brain Res 114:383–401.PubMedGoogle Scholar
  55. Hirata Y, Arikin R, Highstein SM (1998) Multiple linear regression analysis of floccular Purkinje cell simple spike activity during vertical visual following in squirrel monkeys. Soc Neurosci Abstr 554.8.Google Scholar
  56. Hoddevik GH (1978) The projection from nucleus reticularis tegmenti pontis onto the cerebellum in the cat. A study using the methods of anterograde degeneration and retrograde axonal transport of horseradish peroxidase. Anat Embryol 153:227–242.PubMedCrossRefGoogle Scholar
  57. Hunt S, Schmidt J (1978) Some observations on the binding patterns of α-bungarotoxin in the central nervous system of the rat. Brain Res 157:213–232.PubMedCrossRefGoogle Scholar
  58. Ikai Y, Takada M, Shinonaga Y, Mizuno N (1992) Dopaminergic and non-dopaminergic neurons in the ventral tegmental area of the rat project respectively to the cerebellar cortex and deep cerebellar nuclei. Neuroscience 51:719–728.PubMedCrossRefGoogle Scholar
  59. Ikeda M, Houtani T, Ueyama T, Sugimoto T (1992) Distribution and cerebellar projections of cholinergic and corticotropin-releasing factor-containing neurons in the caudal vestibular nuclear complex and adjacent brainstem structures. Neuroscience 49(3):635–651.PubMedCrossRefGoogle Scholar
  60. Ito M (1982) Cerebellar control of the vestibulo-ocular reflex—Around the flocculus hypothesis. Annu Rev Neurosci 301:275–296.Google Scholar
  61. Ito M (1984) The Cerebellum and Neural Control. Raven Press, New York.Google Scholar
  62. Ito M (1998) Cerebellar learning in the vestibulo-ocular reflex. Trends Cognit Sci 2:305–371.Google Scholar
  63. Ito M, Nisimaru N, Yamamoto M (1973) Specific neural connections for the cerebellar control of vestibulo-ocular reflexes. Brain Res 60(1):238–243.PubMedCrossRefGoogle Scholar
  64. Ito M, Shida T, Yagi N, Yamamoto M (1974) The cerebellar modification of rabbit’s horizontal vestibulo-ocular reflex induced by sustained head rotation combined with visual stimulation. Proc Jpn Acad 50:85–89.Google Scholar
  65. Ito M, Nisimaru N, Yamamoto M (1976) Pathways for the vestibulo-ocular reflex excitation arising from semicircular canals of rabbits. Exp Brain Res 24:257–271.PubMedGoogle Scholar
  66. Ito M, Jastreboff PJ, Miyashita Y (1982) Specific effects of unilateral lesions in the flocculus upon eye movements in albino rabbits. Exp Brain Res 45:233–242.PubMedCrossRefGoogle Scholar
  67. Jaarsma D, Levey AI, Frostholm A, Rotter A, Voogd J (1995) Light-microscopic distribution and parasagittal organisation of muscarinic receptors in rabbit cerebellar cortex. J Chem Neuroanat 9:241–259.PubMedCrossRefGoogle Scholar
  68. Jaarsma D, Dino MR, Cozzari C, Mugnaini E (1996) Cerebellar choline acetyltransferase positive mossy fibres and their granule and unipolar brush cell targets: a model for central cholinergic nicotinic neurotransmission. J Neurocytol 25(12):829–842.PubMedGoogle Scholar
  69. Jaarsma D, Ruigrok TJ, Caffe R, Cozzari C, Levey AI, Mugnaini E, Voogd J (1997) Cholinergic innervation and receptors in the cerebellum. Prog Brain Res 114:67–96.PubMedGoogle Scholar
  70. Katoh A, Kitazawa H, Itohara S, Nagao S (1998) Dynamic characteristics and adaptibility of mouse vestibulo-ocular and optokinetic response eye movements and the role of the flocculo-olivary system revealed by chemical lesions. Proc Natl Acad Sci USA 95:7705–7710.PubMedCrossRefGoogle Scholar
  71. Kawaguchi Y (1985) Two groups of secondary vestibular neurons mediating horizontal canal signals, probably to the ipsilateral medial rectus muscle, under inhibitory influences from the cerebellar flocculus in rabbits. Neurosci Res 2:434–446.PubMedCrossRefGoogle Scholar
  72. Keele SW, Ivry R (1990) Does the cerebellum provide a common computation for diverse tasks? A timing hypothesis (Review). Ann NY Acad Sci 608:179–211.PubMedGoogle Scholar
  73. Keller EL, Precht W (1979) Visual-vestibular responses in vestibular nuclear neurons in the intact and cerebellectomized, alert cat. Neuroscience 4:1599–1613.PubMedCrossRefGoogle Scholar
  74. Kennedy H, Courjon JH, Flandrin JM (1982) Vestibulo-ocular reflex and optokinetic nystagmus in adult cats reared in stroboscopic illumination. Exp Brain Res 48(2):279–287.PubMedCrossRefGoogle Scholar
  75. Khater TT, Quinn KJ, Pena, J, Baker JF, Peterson BW (1993) The latency of the cat vestibulo-ocular reflex before and after short-and long-term adaptation. Exp Brain Res 94:16–32.PubMedCrossRefGoogle Scholar
  76. Kimoto Y, Tohyama M, Satoh K, Sakumoto T, Takahashi Y, Shimizu N (1981) Fine structure of rat cerebellar noradrenaline terminals as visualized by potassium per-manganate “in situ perfusion” fixation method. Neuroscience 6:47–58.PubMedCrossRefGoogle Scholar
  77. Kimura M, Takeda T, Maekawa K (1991) Contribution of eye muscle proprioception to velocity-response characteristics of eye movements: involvement of the cerebellar flocculus. Neurosci Res 12:160–168.PubMedCrossRefGoogle Scholar
  78. Koekkoek SKE, Van Alphen AM, Van den Burg J, Grosveld F, Galjart N, Zeeuw CI (1997) Gain adaptation and phase dynamics of compensatory eye movements in mice. Genes Function 1:175–190.Google Scholar
  79. Kotchabhakdi N, Walberg F (1977) Cerebeller afferents from neurons in motor nuclei of cranial nerves demonstrated by retrograde axonal transport of horse-radish peroxidase. Brain Res 137:158–163.PubMedCrossRefGoogle Scholar
  80. Kotchabhakdi N, Walberg F (1978) Cerebeller afferents from the vestibular nuclei in the cat: an experimental study with the method of retrograde axonal transport of horseradish peroxidase. Exp Brain Res 31:591–604.PubMedGoogle Scholar
  81. Kotchabhakdi N, Hoddevik GH, Walberg F (1978) Cerebellar afferent projections from the perihypoglossal nuclei: an experimental study with the method of retrograde axonal transport of horseradish peroxidase. Exp Brain Res 31(1): 13–29.PubMedCrossRefGoogle Scholar
  82. Laine J, Axelrad H (2002) Extending the cerebellar Lugaro cell class. Neuroscience 115:363–374.PubMedGoogle Scholar
  83. Langer T, Fuchs AF, Chubb MC, Scudder CA, Lisberger SG (1985a) Floccular efferents in the rhesus macaque as revealed by autoradiography and horseradish peroxidase. J Comp Neurol 235:26–37.PubMedGoogle Scholar
  84. Langer T, Fuchs AF, Scudder CA, Chubb MC (1985b) Afferents to the flocculus of the cerebellum in the rhesus macaque as revealed by retrograde transport of horseradish peroxidase. J Comp Neurol 235:1–25.PubMedGoogle Scholar
  85. Leonard CS (1986) Signal characteristics of cerebellar Purkinje cells in the rabbit flocculus during compensatory eye movements. Ph.D. Thesis, New York University, New York.Google Scholar
  86. Leonard CS, Simpson JI (1986) Simple spike modulation of floccular Purkinje cells during the reversible blockade of their climbing fiber afferents. In: Keller EL, Zee DS (eds) Adaptive Processes in Visual and Oculomotor Systems. Oxford: Pergamon, pp. 429–434.Google Scholar
  87. Lisberger SG (1998) Cerebellar LTD: a molecular mechanism of behavioral learning? Cell 92:701–704.PubMedCrossRefGoogle Scholar
  88. Lisberger SG, Pavelko TA (1988) Brain stem neurons in modified pathways for motor learning in the primate vestibulo-ocular reflex. Science 242:771–773.PubMedGoogle Scholar
  89. Lisberger SG, Miles FA, Zee DS (1984) Signals used to compute errors in monkey vestibule-ocular reflex: possible role of flocculus. J Neurophysiol 52: 1140–1153.PubMedGoogle Scholar
  90. Lisberger SG, Pavelko TA, Broussard DM (1994) Responses during eye movements of brainstem neurons that receive monosynaptic inhibition from the flocculus and ventral paraflocculus in monkeys. J Neurophysiol 72:909–927.PubMedGoogle Scholar
  91. Llinás RR (1982) Radial connectivity in the cerebellar cortex: a novel view regarding the functional organization of the molecular layer. Exp Brain Res Suppl 6:189–194.Google Scholar
  92. Lopez-Barneo J, Darlot C, Berthoz A, Baker R (1982) Neuronal activity in prepositus nucleus correlated with eye movement in the alert cat. J Neurophysiol 47:329–352.PubMedGoogle Scholar
  93. Madtes PC Jr, King JS (1994) Distribution of cholecystokinin binding sites in the North American opossum cerebellum. J Chem Neuroanat 7(1–2):105–112.PubMedGoogle Scholar
  94. Maekawa K, Takeda T (1977) Afferent pathways from the visual system to the cerebellar flocculus in the rabbit. In: Baker R, Berthoz A (eds) Control by Gaze of Brain Stem Neurons. Amsterdam: Elsevier, pp. 187–195.Google Scholar
  95. Maekawa K, Kimura M (1980) Mossy fiber projection to the cerebellar flocculus from the extraocular muscle afferents. Brain Res 191:313–325.PubMedCrossRefGoogle Scholar
  96. Mangini NJ, Vanable JW Jr, Williams MA, Pinto LH (1985) The optokinetic nystagmus and ocular pigmentation of hypopigmented mouse mutants. J Comp Neurol 241(2):191–209.PubMedCrossRefGoogle Scholar
  97. Matsushita K, Wakamori M, Rhyu IJ, Arii T, Oda S, Mori Y, Imoto K (2002) Bidirectional alterations in cerebellar synaptic transmission of tottering and rolling Ca2+ channel mutant mice. J Neurosci 22(11):4388–4398.PubMedGoogle Scholar
  98. McCrea RA, Baker R (1985) Anatomical connections of the nucleus prepositus of the cat. J Comp Neurol 237:377–407.PubMedGoogle Scholar
  99. McCrea RA, Baker R, Delgado-Garcia J (1979) Afferent and efferent organization of the prepositus hypoglossi nucleus. Prog Brain Res 50:653–665.PubMedGoogle Scholar
  100. McCrea RA, Yoshida K, Berthoz A, Baker R (1980) Eye movement related activity and morphology of second order vestibular neurons terminating in the cat abducens nucleus. Exp Brain Res 40:468–473.PubMedCrossRefGoogle Scholar
  101. McCrea RA, Strassman A, May E, Highstein SM (1987) Anatomical and physiological characteristics of vestibular neurons mediating the horizontal vestibuloocular reflex of the squirrel monkey. J Comp Neurol 264:547–570.PubMedGoogle Scholar
  102. McFarland JL, Fuchs AF (1992) Discharge patterns in nucleus prepositus hypoglossi and adjacent medial vestibular nucleus during horizontal eye movement in behaving macaques. J Neurophysiol 68:319–332.PubMedGoogle Scholar
  103. Miles FA, Fuller JH, Braitman DJ, Dow BM (1980) Long-term adaptive changes in primate vestibuloocular reflex. III. Electrophysiological observations in flocculus of normal monkeys. J Neurophysiol 43:1437–1476.PubMedGoogle Scholar
  104. Mitchiner JC, Pinto LH, Vanable JW Jr (1976) Evoked eye movements in the mouse (Mus musculus). Vision Res 16:1169–1171.PubMedCrossRefGoogle Scholar
  105. Miyashita Y, Ito M, Jastreboff PJ, Maekawa K, Nagao S (1980) Effect upon eye movements of rabbits induced by severance of mossy fiber visual pathway to the cerebellar flocculus. Brain Res 198:210–215.PubMedCrossRefGoogle Scholar
  106. Mugnaini E (1983) The length of cerebellar parallel fibers in chicken and rhesus monkey. J Comp Neurol 220:7–15.PubMedCrossRefGoogle Scholar
  107. Mugnaini E, Floris A (1994) The unipolar brush cell: a neglected neuron of the mammalian cerebellar cortex. J Comp Neurol 339:174–180.PubMedCrossRefGoogle Scholar
  108. Mugnaini E, Dino M, Jaarsma D (1997) The unipolar brush cells of the mammalian cerebellum and cochlear nucleus: cytology and microcircuitry. Prog Brain Res 114:131–151.PubMedGoogle Scholar
  109. Nagao S (1983) Effects of vestibulocerebellar lesions upon dynamic characteristics and adaptation of vestibulo-ocular and optokinetic responses in pigmented rabbits. Exp Brain Res 53:36–46.PubMedCrossRefGoogle Scholar
  110. Nagao S (1989a) Behavior of floccular Purkinje cells correlated with adaptation of vestibulo-ocular reflex in pigmented rabbits. Exp Brain Res 77:531–540.PubMedGoogle Scholar
  111. Nagao S (1989b) Role of cerebellar flocculus in adaptive interaction between optokinetic eye movement response and vestibulo-ocular reflex in pigmented rabbits. Exp Brain Res 77:541–551.PubMedGoogle Scholar
  112. Nagao S, Kitazawa H, Osanai R, Hiramatsu T (1997) Acute effects of tetrahydrobiopterin on the dynamic characteristics and adaptability of the vestibulo-ocular reflex in normal and flocculus lesioned rabbits. Neurosci Lett 231:41–44.PubMedCrossRefGoogle Scholar
  113. Ojima H, Kawajiri SI, Yamasaki T (1989) Cholinergic innervation of the rat cerebellum: qualitative and quantitative analyses of elements immunoreactive to a monoclonal antibody against choline acetyltransferase. J Comp Neurol 290:41–52.PubMedCrossRefGoogle Scholar
  114. Otten LJ, Rugg MD (2002) The birth of a memory. Trends Neurosci 25:279–282.PubMedCrossRefGoogle Scholar
  115. Overbeck TL, King JS (1999) Developmental expression of corticotropin-releasing factor in the postnatal murine cerebellum. Brain Res Dev Brain Res 115:145–159.PubMedGoogle Scholar
  116. Panagopoulos NT, Papadopoulos GC, Matsokis NA (1991) Dopaminergic innervation and binding in the rat cerebellum. Neurosci Lett 130:208–212.PubMedCrossRefGoogle Scholar
  117. Payen ET, Verkerk D, Michalovich SD, Dreyer A, Winterpacht A, Lee B, De Zeeuw CI, Grosveld F, Galjart N (1998) The centromeric/nucleolar chromatin protein ZFP-37 may function to specify neuronal nuclear domains. J Biol Chem 273:9099–9109.PubMedCrossRefGoogle Scholar
  118. Pazos A, Palacios JM (1985) Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. Serotonin-1 receptors. Brain Res 346:205–230.PubMedGoogle Scholar
  119. Raymond JL, Lisberger SG (1998) Neural learning rules for the vestibulo-ocular reflex. J Neurosci 18:9112–9129.PubMedGoogle Scholar
  120. Reisine H, Highstein SM (1979) The ascending tract of Deiters conveys a head velocity signal to medial rectus motoneurons. Brain Res 170:172–176.PubMedCrossRefGoogle Scholar
  121. Reisine H, Strassman A, Highstein SM (1981) Eye position and head velocity signals are conveyed to medial rectus motoneurons in the alert cat by the ascending tract of Deiters. Brain Res 211:153–157.PubMedCrossRefGoogle Scholar
  122. Robinson DA (1976) Adaptive gain control of vestibuloocular reflex by the cerebellum. J Neurophysiol 39:954–968.PubMedGoogle Scholar
  123. Ruigrok TJH, Osse RJ, Voogd J (1992) Organization of inferior olivary projections to the flocculus and ventral paraflocculus of the rat cerebellum. J Comp Neurol 316:129–150.PubMedCrossRefGoogle Scholar
  124. Sato Y, Kawasaki T (1990) Operational unit responsible for plane-specific control of eye movement by cerebellar flocculus in cat. J Neurophysiol 64:551–564.PubMedGoogle Scholar
  125. Sato Y, Kawasaki T, Ikarashi K (1983) Afferent projections from the brainstem to the floccular three zones in cats. II. Mossy fiber projections. Brain Res 272:37–48.PubMedGoogle Scholar
  126. Sato Y, Kanda K, Kawasaki T (1988) Target neurons of floccular middle zone inhibition in medial vestibular nucleus. Brain Res 446:225–235.PubMedCrossRefGoogle Scholar
  127. Shibuki K, Gomi H, Chen L, Bao S, Kim JJ, Wakatsuki H, Fujisaki T, Fujimoto K, Katoh A, Ikeda T, Chen C, Thompson RF, Itohara S (1996) Deficient cerebellar long-term depression, impaired eyeblink conditioning, and normal motor coordination in GFAP mutant mice. Neuron 16:587–599.PubMedCrossRefGoogle Scholar
  128. Shidara M, Kawano K, Gomi H, Kawato M (1993) Inverse-dynamics model eye movement control by Purkinje cells in the cerebellum. Nature 365:50–52.PubMedCrossRefGoogle Scholar
  129. Shinoda Y, Yoshida K (1975) Neural pathways from the vestibular labyrinths to the flocculus in the cat. Exp Brain Res 22:97–111.PubMedCrossRefGoogle Scholar
  130. Simpson JI, Leonard CS, Soodak RE (1988) The accessory optic system of rabbit. II. Spatial organization of direction selectivity. J Neurophysiol 60:2055–2072.PubMedGoogle Scholar
  131. Simpson JI, Wylie DR, De Zeeuw CI (1996) On climbing fiber signals and their consequences. Behav Brain Sci 19:380–394.Google Scholar
  132. Simpson JI, Belton T, Suh M, Winkelman BHJ (2002) Complex spike activity in the flocculus signals more than the eye can see. Annals of NYAS 978:232–237.Google Scholar
  133. Soodak RE, Simpson JI (1988) The accessory optic system of rabbit. I. Basic visual response properties. J Neurophysiol 60:2037–2054.PubMedGoogle Scholar
  134. Stahl JS, Simpson JI (1995) Dynamics of rabbit vestibular nucleus neurons and the influence of the flocculus. J Neurophysiol 73:1396–1413.PubMedGoogle Scholar
  135. Stahl JS, van Alphen AM, De Zeeuw CI (2000) A comparison of video and magnetic search coil recordings of mouse eye movements. J Neurosci Methods 99:101–110.PubMedCrossRefGoogle Scholar
  136. Sun JC, van Alphen AM, Huygens P, Wagenaar M, Hoogenraad CC, Hasson T, Koekkoek SKE, Bohne BA, De Zeeuw CI (2001) Origin of vestibular dysfunction in Usher syndrome type 1B/shaker-1 mice. Neurobiol Dis 8:69–77.PubMedCrossRefGoogle Scholar
  137. Sutin J, Minneman KP (1985) Adrenergic beta receptors are not uniformly distributed in the cerebellar cortex. J Comp Neurol 236:547–554.PubMedCrossRefGoogle Scholar
  138. Takemori S, Cohen B (1974) Loss of visual suppression of vestibular nystagmus after flocculus lesions. Brain Res 72:213–224.PubMedGoogle Scholar
  139. Tamayo ML, Maldonado C, Plaza SL, Alvira GM, Tamayo GE, Zambrano M, Frias JL, Bernal JE (1996) Neuroradiology and clinical aspects of Usher syndrome. Clin Genet 50:126–132.PubMedGoogle Scholar
  140. Tan HS (1992) Gaze stabilization in the rabbit. Thesis, Erasmus University, Rotterdam.Google Scholar
  141. Tan HS, van Neerven J, Collewijn H, Pompeiano O (1991) Effects of alpha-noradrenergic substances on the optokinetic and vestibulo-ocular responses in the rabbit: a study with systemic and intrafloccular injections. Brain Res 562(2):207–215.PubMedCrossRefGoogle Scholar
  142. Tan HS, Collewijn H (1991) Cholinergic modulation of optokinetic and vestibulo-ocular responses: a study with microinjections in the flocculus of the rabbit. Exp Brain Res 85(3):475–481.PubMedCrossRefGoogle Scholar
  143. Tan HS, Collewijn H (1992a) Cholinergic and noradrenergic stimulation in the rabbit flocculus has synergistic facilitatory effects on optokinetic responses. Brain Res 586:130–134.PubMedCrossRefGoogle Scholar
  144. Tan HS, Collewijn H (1992b) Muscarinic nature of cholinergic receptors in the cerebellar flocculus involved in the enhancement of the rabbit’s optokinetic response. Brain Res 591:337–340.PubMedCrossRefGoogle Scholar
  145. Tan HS, Gerrits NM (1992) Laterality in the vestibulo-cerebellar mossy fiber projection to flocculus and caudal vermis in the rabbit: a retrograde fluorescent double-labeling study. Neuroscience 47:909–919.PubMedCrossRefGoogle Scholar
  146. Tan HS, Collewijn H, Van der Steen J (1992) Optokinetic nystagmus in the rabbit and its modulation by bilateral microinjection of carbachol in the cerebellar flocculus. Exp Brain Res 90:456–468.PubMedCrossRefGoogle Scholar
  147. Tan HS, Collewijn H, Van der Steen J (1993) Shortening of vestibular nystagmus in response to velocity steps by microinjection of carbachol in the rabbit’s cerebellar flocculus. Exp Brain Res 92:385–390.PubMedGoogle Scholar
  148. Tan J, Gerrits NM, Nanhoe RS, Simpson JI, Voogd J (1995) Zonal organization of the climbing fiber projection to the flocculus and nodulus of the rabbit. A combined axonal tracing and acetylcholinesterase histochemical study. J Comp Neurol 356:23–50.PubMedGoogle Scholar
  149. Terwindt GM, Ophoff RA, Haan J, Sandkuijl LA, Frants RR, Ferrari MD (1998) Migraine, ataxia and epilepsy: a challenging spectrum of genetically determined calcium channelopathies. Eur J Hum Genet 6:297–307.PubMedCrossRefGoogle Scholar
  150. Thunnissen IE (1990) The vestibulo-cerebellar and vestibulo-oculomotor projections in the rabbit. Ph.D. Thesis, Erasmus University, Rotterdam.Google Scholar
  151. Uchino Y, Suzuki S (1983) Axon collaterals to the extraocular motoneuron pools of inhibitory vestibuloocular neurons activated from the anterior, posterior, and horizontal semicircular canals in the cat. Neurosci Lett 37:129–135.PubMedCrossRefGoogle Scholar
  152. Uchino Y, Hirai N, Suzuki S (1982) Branching pattern and properties of vertical-and horizontal-related excitatory vestibulo-ocular neurons in the cat. J Neurophysiol 48:891–903.PubMedGoogle Scholar
  153. Umetani T (1992) Efferent projections from the flocculus in the albino rat as revealed by an autoradiographic orthograde tracing method. Brain Res 586: 91–103.PubMedCrossRefGoogle Scholar
  154. Van Alphen AM, De Zeeuw CI (2002) Cerebellar LTD facilitates but is not essential for longterm adaptation of the vestibulo-ocular reflex. Eur J Neurosci 16:486–490.PubMedGoogle Scholar
  155. Van Alphen AM, Stahl J, De Zeeuw CI (2001) The dynamic characteristics of the mouse horizontal vestibulo-ocular and optokinetic response. Brain Res 890: 296–305.PubMedGoogle Scholar
  156. Van Alphen AM, Schepers T, Luo C, De Zeeuw CI (2002) Motor performance and motor learning in Lurcher mice. Proc N Y Acad Sci 978:413–425.Google Scholar
  157. Van Der Steen J, Tan HS (1997) Cholinergic control in the floccular cerebellum of the rabbit. Prog Brain Res 114:335–345.PubMedGoogle Scholar
  158. Van Der Steen J, Simpson JI, Tan J (1994) Functional and anatomic organization of three-dimensional eye movements in rabbit cerebellar flocculus. J Neurophysiol 72:31–46.PubMedGoogle Scholar
  159. Van Neerven J (1990) Visuo-vestibular interactions in the rabbit: the role of the flocculus and its mono-aminergic inputs. Thesis, Erasmus University, Rotterdam.Google Scholar
  160. Van Neerven J, Pomepeiano O, Collewijn H (1989) Depression of the vestibulo-ocular and optokinetic responses by intrafloccular microinjection of GABA-A and GABA-B agonists in the rabbit. Arch Ital Biol 127:243–263.PubMedGoogle Scholar
  161. Van Neerven J, Pompeiano O, Collewijn H, Van der Steen J (1990) Injections of beta-noradrenergic substances in the flocculus of rabbits affect adaptation of the VOR gain. Exp Brain Res 79:249–260.PubMedCrossRefGoogle Scholar
  162. Voogd J, Bigaré F (1980) Topographical distribution of olivary and corticonuclear fibers in the cerebellum. The inferior olivary nucleus. New York: Raven Press, pp. 207–305.Google Scholar
  163. Voogd J, Gerrits NM, Ruigrok TJH (1996) Organization of the vestibulocerebellum. Ann N Y Acad Sci 781:553–579.PubMedGoogle Scholar
  164. Waespe W, Cohen B, Raphan T (1983) Role of the flocculus and paraflocculus in optokinetic nystagmus and visual-vestibular interactions: effects of lesions. Exp Brain Res 50:9–33.PubMedCrossRefGoogle Scholar
  165. Weil D, Blanchard S, Kaplan J, Guilford P, Gibson F, Walsh J, Mburu P, Varela A, Levilliers J, Weston MD (1995) Defective myosin VIIA gene responsible for Usher syndrome type 1B. Nature 374:60–61.PubMedGoogle Scholar
  166. Weston MD, Kelley PM, Overbeck LD, Wagenaar M, Orten DJ, Hasson T, Chen ZY, Corey P, Mooseker M, Sumegi J, Cremers C, Moller C, Jacobsen SG, Gorin MB, Kimberling WJ (1996) Myosin VIIA mutation screening in 189 Usher syndrome type 1 patients. Am J Hum Genet 59:1074–1083.PubMedGoogle Scholar
  167. Wylie DR, De Zeeuw CI, DiGiorgi PL, Simpson JI (1994) Projections of individual Purkinje cells of identified zones in the ventral nodulus to the vestibular and cerebellar nuclei in the rabbit. J Comp Neurol 349:448–464.PubMedCrossRefGoogle Scholar
  168. Yamamoto F, Sato Y, Kawasaki T (1986) The neuronal pathway from the flocculus to the oculomotor nucleus: an electrophysiological study of group y nucleus in cats. Brain Res 371:350–354.PubMedGoogle Scholar
  169. Yamamoto M (1978) Localization of rabbit’s flocculus Purkinje cells projecting to the lateral cerebellar nucleus and the nucleus prepositus hypoglossi investigated by means of the horseradish peroxidase retrograde axonal transport. Neurosci Lett 7:197–202.Google Scholar
  170. Yamamoto M (1979) Vestibulo-ocular reflex pathways of rabbits and their representation in the cerebellar flocculus. Prog Brain Res 50:451–457.PubMedGoogle Scholar
  171. Yamamoto M, Shimoyama I, Highstein SM (1978) Vestibular nucleus neurons relaying excitation from the anterior canal to the oculomotor nucleus. Brain Res 148:31–42.PubMedCrossRefGoogle Scholar
  172. Zee DS, Leigh RJ, Mathieu-Millaire F (1980) Cerebellar control of ocular gaze stability. Ann Neurol 7:37–40.PubMedCrossRefGoogle Scholar
  173. Zee DS, Yamazaki A, Butler PH, Gucer G (1981) Effects of ablation of flocculus and para-flocculus on eye movements in primate. J Neurophysiol 46:878–899.PubMedGoogle Scholar
  174. Zuo J, De Jager PL, Takahashi KA, Jiang W, Linden DJ, Heintz N (1997) Neurodegeneration in Lurcher mice caused by mutation in delta2 glutamate receptor gene. Nature 388:769–773.PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 2004

Authors and Affiliations

  • Chris I. De Zeeuw
  • Sebastiaan K. E. Koekkoek
  • Arjan M. van Alphen
  • Chongde Luo
  • Freek Hoebeek
  • Johannes van der Steen
  • Maarten A. Frens
  • John Sun
  • Hieronymus H. L. M. Goossens
  • Dick Jaarsma
  • Michiel P. H. Coesmans
  • Matthew T. Schmolesky
  • Marcel T. G. De Jeu
  • Niels Galjart

There are no affiliations available

Personalised recommendations