Advertisement

Vestibuloautonomic Interactions: A Teleologic Perspective

  • C. D. Balaban
  • B. J. Yates
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 19)

7. Summary and Conclusions

A number of lines of evidence suggest that multiple sensory inputs that are influenced by gravitoinertial accelerations, including those from the vestibular labyrinth, retina, cutaneous and muscle receptors, baroreceptors, and abdominal visceral receptors, are integrated to produce an accurate perception of the location of the body in space, particularly during unusual conditions (e.g., swimming underwater). Such a processing of multiple sensory inputs appears to be important in coordinating appropriate motor and autonomic responses during movement and changes in posture. Although particular effector systems are most strongly influenced by particular sensory inputs (e.g., extraocular muscle contractions are driven powerfully be signals from semicircular canals, whereas components of the sympathetic nervous system that innervate vascular smooth muscle are strongly regulated by baroreceptor inputs), the “secondary inputs” and cerebellar contributions can potentially shape the responses, reduce their latency, and improve their accuracy. Because movement frequently requires coordinated changes in limb, axial, and respiratory muscle activity, accompanied by stereotyped adjustments in the cardiovascular system, it is important to explore the organization of components of “central motor programs” or “central pattern generators” that coordinate both motor and autonomic responses during the execution of movement. In addition to motor control, it is important to acknowledge the implications of the extensive convergence of vestibular and autonomic afferent information in the brain stem and cerebellum for spatial perception and affective changes associated with motion sickness and vestibular dysfunction. It appears that responses of vestibular and nonvestibular receptors to gravitoinertial challenges are integrated centrally to generate perceptual representations of gravitoinertial challenges. In addition, the visceral manifestations of motion sickness and vestibular dysfunction may be regarded as referred visceral discomfort related to gravitoinertial stimulation in the same sense that angina pectoris is a referred somatic pain related to cardiac dysfunction (Balaban 1999). Because these referred complaints are unpleasant and are not readily attributed to balance function, they may serve as eliciting or reinforcing stimuli for conditioned avoidance of situations that evoke discomfort. This conditioned avoidance may be one aspect of the linkage between balance disorders, height vertigo, and agoraphobia (Balaban 1999).

Keywords

Semicircular Canal Vestibular Nucleus Vestibular Stimulation Ventrolateral Medulla Vestibular Input 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agostoni E (1970) Statics. In: Campbell EJM, Agostoni E, and Davis JN (eds) The Respiratory Muscles: Mechanics and Neural Control, Second edition. Philadelphia: W.B. Saunders Company, pp. 48–79.Google Scholar
  2. Agostoni E (1977) Transpulmonary pressure. In: West JB (ed) Regional Differences in the Lung. New York: Academic Press, pp. 245–280.Google Scholar
  3. Ammons WS (1988) Renal and somatic input to spinal neurons antidromically activated from the ventrolateral medulla. J Neurophysiol 60:1967–1981.PubMedGoogle Scholar
  4. Anastasopoulos D, Haslwanter T, Bronstein A, Fetter M, Dichgans J (1997) Dissociation between the perception of body verticality and visual vertical in acute peripheral vestibular disorder in humans. Neurosci Lett 233:151–153.PubMedCrossRefGoogle Scholar
  5. Asch SE, Witkin HA (1948) Studies in space orientation. II. Perception of the upright with displaced visual fields and with body tilted. J Exp Psychol 38:455–477.Google Scholar
  6. Aston-Jones G, Shipley MT, Chouvet GEM, van Bockstaele E, Pieribone V, Shiekhatter R, Akaoka H, Drolet G, Atier B, Charléty P, Valentino RJ, Williams JT (1991a) Afferent regulation of locus coeruleus neurons: anatomy, physiology and pharmacology. In: Barnes CD, Pompeiano O (eds) Neurobiology of the Locus Coeruleus. Amsterdam: Elsevier, pp. 47–75.Google Scholar
  7. Aston-Jones G, Chiang C, Alexinsky T (1991b) Discharge of noradrenergic locus coeruleus neurons in behaving rats and monkeys suggests a role in vigilance. In: Barnes CD, Pompeiano O (eds) Neurobiology of the Locus Coeruleus. Amsterdam: Elsevier, pp. 501–520.Google Scholar
  8. Babkin BP, Bornstein MB (1943) Effect of swinging and binaural galvanic stimulation on the motility of the stomach in dogs. Rev Can Biol 2:336–349.Google Scholar
  9. Balaban CD (1984) Olivovestibular and cerebellovestibular connections in albino rabbits. Neuroscience 12:129–149.PubMedCrossRefGoogle Scholar
  10. Balaban CD (1996a) Efferent projections from the cerebellar nodulus and uvula in rabbits: potential substrates for cerebellar modulation of vestibulo-autonomic interactions. Abstracts, 1996 Midwinter Research Meeting of the Association for Research in Otolaryngology, p. 176. ARO, Mount Royal NJ.Google Scholar
  11. Balaban CD (1996b) The role of the cerebellum in vestibular autonomic function. In: Yates BJ, Miller AD (eds) Vestibular Autonomic Regulation. Boca Raton: CRC Press, pp. 127–144.Google Scholar
  12. Balaban CD (1996c) Vestibular nucleus projections to the parabrachial nucleus in rabbits: implications for vestibular influences on autonomic function. Exp Brain Res 108:367–381.PubMedCrossRefGoogle Scholar
  13. Balaban CD (1997) Projections from the parabrachial nucleus to the vestibular nuclei in rabbits: a visceral relay to vestibular circuits. Abstracts, Midwinter Meeting of Association for Research in Otolaryngology, p. 69. ARO, Mount Royal NJ.Google Scholar
  14. Balaban CD (1999) Vestibular autonomic regulation. Curr Opin Neurol 12:29–33.PubMedCrossRefGoogle Scholar
  15. Balaban CD (2002) Neural substrates linking balance control and anxiety. Physiol Behav 77:469–475.PubMedCrossRefGoogle Scholar
  16. Balaban CD (2003) Vestibular nucleus projections to the Edinger-Westphal and anteromedian nuclei of rabbits. Brain Res., 963:121–131.PubMedCrossRefGoogle Scholar
  17. Balaban CD, Beryozkin G (1994) Vestibular nucleus projections to nucleus tractus solitarius and the dorsal motor nucleus of the vagus nerve: potential substrates for vestibulo-autonomic interactions. Exp Brain Res 98:200–212.PubMedCrossRefGoogle Scholar
  18. Balaban CD, Porter JD (1998) Neuroanatomical substrates for vestibulo-autonomic interactions. J Vestib Res 8:7–16.PubMedCrossRefGoogle Scholar
  19. Balaban CD, Thayer JF (2001) Neurological bases for balance-anxiety links. J Anxiety Disord 15:53–79.PubMedGoogle Scholar
  20. Balaban CD, McGee DM, Zhou J, Scudder CA (2002) Responses of primate caudal parabrachial nucleus and Kölliker-Fuse nucleus neurons to whole body rotation. J Neurophysiol 88:3175–3193.PubMedGoogle Scholar
  21. Bankoul S, Neuhuber WL (1990) A cervical primary afferent input to vestibular nuclei as demonstrated by retrograde transport of wheat germ agglutininhorseradish peroxidase in the rat. Exp Brain Res 79:405–411.PubMedCrossRefGoogle Scholar
  22. Bankoul S, Goto T, Yates B, Wilson VJ (1995) Cervical primary afferent input to vestibulospinal neurons projecting to the cervical dorsal horn: an anterograde and retrograde tracing study in the cat. J Comp Neurol 353:529–538.PubMedCrossRefGoogle Scholar
  23. Barber HO, Stockwell CW (1980) Manual of Electronystagmography, Second edition. St. Louis: C.V. Mosby Company.Google Scholar
  24. Barmack NH, Fagerson MH (1994) Vestibularly evoked activity of single units in the dorsomedial cell column of the inferior olive of the rabbit. Neurosci Abstr 20:1190.Google Scholar
  25. Barnes CD, Manzoni D, Pompeiano O, Stampacchia G, d’Ascanio P (1989) Responses of locus coeruleus and subcoeruleus neurons to sinusoidal neck rotation in decerebrate cat. Neuroscience 31:317–392.CrossRefGoogle Scholar
  26. Bassal M, Bianchi AL (1982) Inspiratory onset or termination induced by electrical stimulation of the brain. Respir Physiol 50:23–40.PubMedCrossRefGoogle Scholar
  27. Batini C, Corvisier J, Hardy O, Jassik-Gerschenfeld D (1978) Brain stem nuclei giving fibers to lobules VI and VII of the cerebellar vermis. Brain Res 152: 241–261.Google Scholar
  28. Baumgarten HG, Grozdanovic Z (1997) Anatomy of central serotonergic projection systems. In: Baumgarten HG, Gothert M (eds) Serotonergic neurons and 5-HT receptors in the CNS. Berlin: Springer, pp. 41–89.Google Scholar
  29. Baxter GM, Williamson TH, McKillop G, Dutton GN (1992) Color Doppler ultrasound of orbital and optic nerve blood flow: effects of posture and timolol 0.5%. Invest Ophthalmol Vis Sci 33:604–610.PubMedGoogle Scholar
  30. Berkley KJ, Hubscher CH (1995) Are there separate central nervous system pathways for touch and pain? Nat Med 1:766–773.PubMedCrossRefGoogle Scholar
  31. Berne RM, Levy MN (1983) Physiology. St. Louis: Mosby.Google Scholar
  32. Biederman-Thorson M, Thorson J (1973) Rotation-compensating reflexes independent of the labyrinth and eye. J Comp Physiol 83:103–122.CrossRefGoogle Scholar
  33. Billig I, Foris JM, Enquist LW, Card JP, Yates BJ (2000) Definition of neuronal circuitry controlling the activity of phrenic and abdominal motoneurons in the ferret using recombinant strains of pseudorabies virus. J Neurosci 20:7446–7454.PubMedGoogle Scholar
  34. Bizzi EO, Pompeiano O, Somogyi I (1964) Vestibular nuclei: activity of single neurons during natural sleep and wakefulness. Science 145:414–415.PubMedGoogle Scholar
  35. Bolton PS, Goto T, Schor RH, Wilson VJ, Yamagata Y, Yates BJ (1992) Response of pontomedullary reticulospinal neurons to vestibular stimuli in vertical planes. Role in vertical vestibulospinal reflexes of the decerebrate cat. J Neurophysiol 67:639–647.PubMedGoogle Scholar
  36. Boyle R, Pompeiano O (1980) Responses of vestibulospinal neurons to sinusoidal rotation of the neck. J Neurophysiol 44:633–649.PubMedGoogle Scholar
  37. Boyle R, Pompeiano O (1981) Convergence and interaction of neck and macular vestibular inputs on vestibulospinal neurons. J Neurophysiol 45:852–868.PubMedGoogle Scholar
  38. Bradley DJ, Gherlarducci B, Paton JFR, Spyer KM (1987a) The cardiovascular responses elicited from the posterior cerebellar cortex in the anaesthetized and decerebrate rabbit. J Physiol 383:537–550.PubMedGoogle Scholar
  39. Bradley DJ, Pascoe JP, Paton JFR, Spyer KM (1987b) Cardiovascular responses and respiratory responses evoked from the posterior cerebellar cortex and fastigial nucleus in the cat. J Physiol 393:107–121.PubMedGoogle Scholar
  40. Bramble DM, Jenkins FA Jr (1993) Mammalian locomotor-respiratory integration: implications for diaphragmatic and pulmonary design. Science 262:235–240.PubMedGoogle Scholar
  41. Bremner JD, Krystal JH, Southwick SM, Charney DS (1996) Noradrenergic mechanisms in stress and anxiety: I. Preclinical studies. Synapse 23:28–38.PubMedGoogle Scholar
  42. Buchanan RA, Williams TD (1985) Intraocular pressure, ocular pulse pressure, and body position. Am J Optom Physiol Opt 62:59–62.PubMedGoogle Scholar
  43. Buettner UW, Büttner U, Henn V (1978) Transfer characteristics of neurons in vestibular nuclei of the alert monkey. J Neurophysiol 41:1614–1628.PubMedGoogle Scholar
  44. Burian M, Gstoettner W, Mayr R (1990) Brainstem projection of the vestibular nerve in the guinea pig: an HRP (horseradish peroxidase) and WGA-HRP (wheat germ agglutinin-HRP) study. J Comp Neurol 293:165–177.CrossRefGoogle Scholar
  45. Bushnell MC, Goldberg ME, Robinson DL (1981) Behavioral enhancement of visual responses in monkey cerebral cortex. I. Modulation in posterior parietal cortex related to selective visual attention. J Neurophysiol 46:755–771.PubMedGoogle Scholar
  46. Cadden SW, Morrison JF (1991) Effects of visceral distension on the activities of neurones receiving cutaneous inputs in the rat lumber dorsal horn: comparison with effects of remote noxious stimuli. Brain Res 558:63–74.PubMedCrossRefGoogle Scholar
  47. Campbell EJM, Agostoni E, Davis JN (1970) The Respiratory Muscles: Mechanics and Neural Control, Second edition. Philadelphia: Saunders.Google Scholar
  48. Carleton SC, Carpenter MB (1984) Distribution of primary vestibular fibers in the brainstem and cerebellum of the monkey. Brain Res 294:281–298.PubMedCrossRefGoogle Scholar
  49. Carlton SM, Leichnetz GR, Young EG, Mayer DJ (1983) Supramedullary afferents of the nucleus rephe magnus in the rat: a study using transcannula HRP gel and autoradiographic techniques. J Comp Neurol 214:43–58.PubMedCrossRefGoogle Scholar
  50. Cavada C, Goldman-Rakic PS (1989) Posterior parietal cortex in rhesus monkeys: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe. J Comp Neurol 287:422–445.PubMedGoogle Scholar
  51. Cedarbaum JM, Aghajanian GK (1978) Afferent projections of the rat locus coeruleus as determined by a retrograde tracing technique. J Comp Neurol 178:1–16.PubMedCrossRefGoogle Scholar
  52. Clark B, Randle RJ, Stewart JD (1975) Vestibulo-ocular accommodation reflex in man. Aviat Space Environ Med 46:1336–1339.PubMedGoogle Scholar
  53. Cobbold AF, Meghirian D, Sherrey JH (1968) Vestibular evoked activity in autonomic motor outflows. Arch Ital Biol 106:113–123.PubMedGoogle Scholar
  54. Collins WE (1988) Some effects of sleep loss on vestibular responses. Aviat Space Environ Med 59:523–529.PubMedGoogle Scholar
  55. Collins WE, Guedry FE Jr (1961) Arousal effects and nystagmus during prolonged constant acceleration. Acta Otolaryngol (Stockh) 54:349–362.Google Scholar
  56. Collins WE, Poe RH (1962) Amphetamine arousal and human vestibular nystagmus. J Pharmacol Exp Ther 138:120–125.PubMedGoogle Scholar
  57. Cotter LA, Arendt HE, Jasko JG, Sprando C, Cass SP, Yates BJ (2001) Effects of postural changes and vestibular lesions on diaphragm and vectus abdominis activity in awake cats. J Appl Physiol 91:137–144.PubMedGoogle Scholar
  58. Cyon É de (1911) L’oreille: Organe d’Orientation dans le Temps et dans l’Espace. Paris: Librairie Félix Alcan.Google Scholar
  59. Delius JD, Vollrath FW (1973) Rotation compensating reflexes independent of the labyrinth: neurosensory correlates in pigeons. J Comp Physiol 83:123–134.CrossRefGoogle Scholar
  60. DeSantis M, Gernandt BE (1971) Effect of vestibular stimulation on pupillary size. Exp Neurol 30:66–77.PubMedCrossRefGoogle Scholar
  61. De Troyer A (1989) The mechanism of the inspiratory expansion of the rib cage. J Lab Clin Med 114:97–104.PubMedGoogle Scholar
  62. Dibona GF, Kopp UC (1997) Neural control of renal function. Physiol Rev 77: 75–197.PubMedGoogle Scholar
  63. Ding YQ, Takada M, Shigemoto R, Mizuno N (1995) Spinoparabrachial tract neurons showing substance P receptor-like immunoreactivity in the lumbar spinal cord of the rat. Brain Res 674:336–340.PubMedCrossRefGoogle Scholar
  64. Doba N, Reis DJ (1974) Role of cerebellum and vestibular apparatus in regulation of orthostatic reflexes in the cat. Circ Res 34:9–18.Google Scholar
  65. Dodge R (1922) Habituation to rotation. J Exp Psychol 6:1–35.Google Scholar
  66. Domyancic AV, Morilak DA (1997) Distributution of α1A-adrenergic receptor mRNA in the rat brain visualized by in situ hybridization. J Comp Neurol 386:358–378.PubMedCrossRefGoogle Scholar
  67. Dow RS, Moruzzi G (1958) The Physiology and Pathology of the Cerebellum. Minneapolis: University of Minnesota Press.Google Scholar
  68. Dowd PJ, Moore EW, Cramer RL (1975) Relationships of fatigue and motion sickness to vestibulo-ocular responses to Coriolis stimulation. Hum Factors 17:98–105.PubMedGoogle Scholar
  69. Doyle DJ, Mark PWS (1990) Reflex bradycardia during surgery. Can J Anaesth 37:219–222.PubMedGoogle Scholar
  70. Drance SM (1962) Studies in the susceptibility of the eye to raised intraocular pressure. Arch Ophthalmol 68:478–485.PubMedGoogle Scholar
  71. Ezure K (1990) Synaptic connections between medullary respiratory neurons and considerations on the generation of respiratory rhythm. Prog Neurobiol 35: 429–450.PubMedCrossRefGoogle Scholar
  72. Ezure K (1996) Respiratory control. In: Yates BJ, Miller AD (eds) Vestibular Autonomic Regulation. Boca Raton: CRC Press, pp. 53–84.Google Scholar
  73. Faugier-Grimaud S, Ventre J (1989) Anatomic connections of inferior parietal cortex (area 7) with subcortical structures related to vestibulo-ocular function in a monkey (Macaca fascicularis). J Comp Neurol 280:1–14.PubMedCrossRefGoogle Scholar
  74. Fay RA, Norgren R (1997) Identification of rat brainstem multisynaptic connections to the oral motor nuclei using pseudorabies virus. III. Lingual muscle motor systems. Brain Res Rev 25:291–311.PubMedGoogle Scholar
  75. Feil K, Herbert H (1995) Topographic organization of spinal and trigeminal somatosensory pathways to the rat parabrachial and Kölliker-Fuse nuclei. J Comp Neurol 353:506–528.PubMedCrossRefGoogle Scholar
  76. Feldman JL (1986) Neurophysiology of breathing in mammals. In: Bloom FE (ed) Handbook of Physiology. The Nervous System. IV. Intrinsic Regulatory Systems of the Brain. Bethesda, MD: American Physiological Society, pp. 463–524.Google Scholar
  77. Foote SL, Berridge CW, Adams LM, Pineda JA (1991) Electrophysiological evidence for the involvement of the locus coeruleus in alerting, orienting and attending. In: Barnes CD, Pompeiano O (eds) Neurobiology of the Locus Coeruleus. Amsterdam: Elsevier, pp. 521–532.Google Scholar
  78. Friberg TR, Weinreb RN (1985) Ocular manifestations of gravity inversion. JAMA 253:1755–1757.PubMedCrossRefGoogle Scholar
  79. Froese AB, Bryan AC (1974) Effects of anesthesia and diaphragmatic mechanics in man. Anesthesiology 41:242–255.PubMedGoogle Scholar
  80. Fuchs A, Kornhuber HH (1969) Extraocular muscle afferents to the cerebellum of the cat. J Physiol 200:713–722.PubMedGoogle Scholar
  81. Fulweiler CE, Saper C (1984) Subnuclear organization of the efferent connections of the parabrachial nucleus in the rat. Brain Res Rev 7:229–259.Google Scholar
  82. Fung SJ, Reddy RM, Barnes CD (1987) Differential labeling of the vestibular complex following unilateral injections of horseradish peroxidase into the cat and rat locus coeruleus. Brain Res 401:347–352.PubMedCrossRefGoogle Scholar
  83. Furman JM, Jacob RG (2001). A clinical taxonomy of dizziness and anxiety in the otoneurologic setting. J Anxiety Disord 15:9–26.PubMedCrossRefGoogle Scholar
  84. Furman JM, O’Leary DM, Wolfe JW (1981) Changes in the horizontal vestibuloocular reflex of the rhesus monkey with behavioral and pharmacologic alerting. Brain Res 206:490–494.PubMedCrossRefGoogle Scholar
  85. Furman JM, Jacob RG, Redfern MS (1998) Clinical evidence that the vestibular system participates in autonomic control. J Vestib Res 8:27–34.PubMedGoogle Scholar
  86. Gallagher JP, Phelan KD, Shinnick-Gallagher P (1992) Modulation of excitatory transmission at the rat medial vestibular nucleus synapse. Ann N Y Acad Sci 656:630–644.PubMedGoogle Scholar
  87. Gdowski GT, McCrea RA (2000) Neck proprioceptive inputs to primate vestibular nucleus neurons. Exp Brain Res 135:511–526.PubMedCrossRefGoogle Scholar
  88. Gerrits NM, Voogd J, Magras IN (1985) Vestibular nuclear efferents to the nucleus raphe pontis, the nucleus reticularis tegmenti pontis and the nucleus pontis in the cat. Neurosci Lett 54:357–362.PubMedCrossRefGoogle Scholar
  89. Giolli RA, Blanks RHI, Torigoe Y (1984) Pretectal and brain stem projections of the medial terminal nucleus of the accessory optic system of the rabbit and rat as studied by anterograde and retrograde neuronal tracing methods. J Comp Neurol 227:228–251.PubMedCrossRefGoogle Scholar
  90. Giolli RA, Blanks RHI, Torigoe Y, Williams DD (1985) Projections of the medial terminal accessory optic nucleus, ventral tegmental nuclei, and substantia nigra of rabbit and rat as studied by retrograde transport of horseradish peroxidase. J Comp Neurol 232:99–116.PubMedCrossRefGoogle Scholar
  91. Giolli RA, Torigoe Y, Blanks RHI, McDonald HM (1988) Projections of the dorsal and lateral terminal accessory optic nuclei and of the interstitial nucleus of the superior fasciculus (posterior fibers) in the rabbit and rat. J Comp Neurol 277: 608–620.PubMedCrossRefGoogle Scholar
  92. Goodhill V (1979) Ear Diseases, Deafness and Dizziness. Hagerstown, MD: Harper & Row.Google Scholar
  93. Gorman JM, Liebowitz MR, Fyer AJ, Stein J (1989) A neuroanatomical hypothesis for panic disorder. Am J Psychiatry 146:148–161.PubMedGoogle Scholar
  94. Gowers WR (1903) A Manual of Diseases of the Nervous System, Second edition. Philadelphia: P. Blakiston’s Son & Co.Google Scholar
  95. Grélot L, Miller AD (1996) Neural control of respiratory muscle activity during vomiting. In: Miller AD, Bianchi AL, Bishop BP (eds) Neural Control of the Respiratory Muscles. Boca Raton: CRC Press, pp. 239–248.Google Scholar
  96. Griffith CR (1920) The organic effects of complete body rotation. J Exp Psychol 3:15–47.Google Scholar
  97. Griffith CR (1924) A note on the persistence of the “practice effect” in rotation experiments. J Comp Psychol 4:137–149.Google Scholar
  98. Grillner S, Nilsson J, Thorstensson (1978) Intra-abdomimal pressure changes during natural movements in man. Acta Physiol Scand 103:275–283.PubMedGoogle Scholar
  99. Guedry, FE Jr (1974) Psychophysics of vestibular sensation. In: Kornhuber HH (ed) Handbook of Sensory Physiology: Vestibular System. Psychophysics, Applied Aspects, and General Interpretation. Berlin: Springer-Verlag, Volume VI, Chapter 2, pp. 4–190.Google Scholar
  100. Guyton AC, Hall JE (1996) Textbook of Medical Physiology, Ninth edition. Philadelphia: Saunders.Google Scholar
  101. Halberstadt AL, Balaban CD (2003) Organization of projections from the raphe nuclei to the vestibular nuclei in rats. Neuroscience 120:571–592.CrossRefGoogle Scholar
  102. Henn V, Baloh RW, Hepp K (1984) The sleep-wake transition in the oculomotor system. Exp Brain Res 54:166–176.PubMedCrossRefGoogle Scholar
  103. Henry RT, Connor JD, Balaban CD (1989) Nodulus-uvula depressor response: central GABA-mediated inhibition of a-adrenergic outflow. Am J Physiol 256: H1601–H1608.PubMedGoogle Scholar
  104. Hokffer BJ, Mitra J, Snider RS (1972) Cerebellar influences on the cardiovascular system. In: Hockman CH (ed) Limbic System Mechanisms and Autonomic Function. Springfield, IL: Charles C. Thomas, pp. 91–112.Google Scholar
  105. Holstege G (1989) Anatomical study of the final common pathway for vocalization in the cat. J Comp Neurol 284:242–252.PubMedCrossRefGoogle Scholar
  106. Hood JD, Pfaltz CR (1954) Observations upon the effects of repeated stimulation upon rotational and caloric nystagmus. J Physiol (Lond) 124:130–144.Google Scholar
  107. Hosoba M, Bando T, Tsukahara N (1978) The cerebellar control of accommodation of the eye in the cat. Brain Res 153:495–505.PubMedCrossRefGoogle Scholar
  108. Huang Q, Zhou D, St John WM (1991) Vestibular and cerebellar modulation of expiratory motor activities in the cat. J Physiol (Lond) 436:385–404.Google Scholar
  109. Huang Q, Zhou D, St John WM (1993) Cerebellar control of expiratory activities of medullary neurons and spinal nerves. J Appl Physiol 74:1934–1940.PubMedGoogle Scholar
  110. Hubscher CH, Berkley KJ (1994) Responses of neurons in caudal solitary nucleus of female rats to stimulation of the vagina, uterine horn and colon. Brain Res 664:1–8.PubMedCrossRefGoogle Scholar
  111. Irwin JA (1881) The pathology of sea-sickness. Lancet 2:907–909.Google Scholar
  112. Ishikawa T, Miyazawa T (1980) Sympathetic responses evoked by vestibular stimulation and their interactions with somato-sympathetic reflexes. J Auton Res 1:243–254.Google Scholar
  113. Ito J, Honjo I (1990) Central fiber connections of the vestibulo-autonomic reflex arc in cats. Acta Otolaryngol (Stockh) 110:379–385.Google Scholar
  114. Ito M (1984) The Cerebellum and Neural Control. New York: Raven Press.Google Scholar
  115. Ito T, Sanda Y (1965) Location of receptors for righting reflexes acting upon the body in primates. Jpn J Physiol 15:235–242.Google Scholar
  116. Ito Y, Gresty MA (1997) Subjective postural orientation and visual vertical during slow pitch tilt for the seated human subject. Aviat Space Environ Med 68:3–12.PubMedGoogle Scholar
  117. Jacob RG, Furman JM, Balaban CD (1996a) Psychiatric aspects of vestibular disorders. In: Baloh RW, Halmagyi GM (eds) Handbook of Neurotology/Vestibular System: New York: Oxford University Press, pp. 509–528.Google Scholar
  118. Jacob RG, Furman JM, Perel JM (1996b) Panic, phobia, and vestibular dysfunction. In: Yates BJ, Miller AD (eds) Vestibular Autonomic Regulation. Boca Raton: CRC Press, pp. 197–227.Google Scholar
  119. Jacobs BL, Azmitia E (1992) Structure and function of the brain serotonin system. Physiol Rev 72:165–229.PubMedGoogle Scholar
  120. Jacobs BL, Fornal CA (1993) 5-HT and motor control: a hypothesis. Trends Neurosci 16:346–352.PubMedCrossRefGoogle Scholar
  121. Jasmin L, Burkey AR, Card JP, Basbaum AI (1997) Transneuronal labeling of a nociceptive pathway, the spino-(trigemino-)parabrachio-amygdaloid, in the rat. J Neurosci 17:3751–3765.PubMedGoogle Scholar
  122. Jian BJ, Cotter LA, Emanuel BA, Cass SP, Yates BJ (1999) Effects of bilateral vestibular lesions on orthostatic tolerance in awake cats. J Appl Physiol 86: 1552–1560.PubMedGoogle Scholar
  123. Jian BJ, Shintani T, Emanuel BA, Yates BJ (2002) Convergence of limb, visceral and vertical semicircular canal or otolith in puts onto vestibular nucleus neurons. Eyp Brain Res 144:247–257.Google Scholar
  124. Johnston AR, Murnion B, McQueen DS, Dutia MB (1993) Excitation and inhibition of rat medial vestibular nucleus neurons by 5-hydroxytryptamine. Exp Brain Res 93:293–298.PubMedCrossRefGoogle Scholar
  125. Jones IH (1918) Equilibrium and Vertigo. Philadelphia: J.B. Lippincott Co.Google Scholar
  126. Kalen P, Karlson M, Wiklund L (1985) Possible excitatory amino acid afferents to nucleus raphe dorsalis of the rat investigated with retrograde wheat germ agglutinin and [3H]aspartate tracing. Brain Res 360:285–297.PubMedCrossRefGoogle Scholar
  127. Kandel ER, Schwartz JH, Jessell TM (1991) Principles of Neural Science, Third edition. New York: Elsevier.Google Scholar
  128. Kano M, Kano M-S, Kusonoki M, Maekawa K (1990) Nature of optokinetic response and zonal organization of climbing fiber afferents in the vestibulocerebellum of the rabbit. II. The nodulus. Exp Brain Res 80:238–251.PubMedCrossRefGoogle Scholar
  129. Kasper J, Diefenhardt A, Mackert A, Thoden U (1992) The vestibulo-ocular response during transient arousal shifts in man. Acta Otolaryngol (Stockh) 112:1–6.Google Scholar
  130. Kaufman MP, Forster HV (1996) Reflexes controlling circulatory, ventilatory and airway responses to exercise. In: Rowell L, Shepherd J (eds) Handbook of Physiology, Section 12, Exercise: Regulation and Integration of Multiple Systems. Bethesda, MD: American Physiological Society/Oxford University Press, pp. 381–447.Google Scholar
  131. Kawano K, Sasaki M, Yamashita M (1980) Vestibular input to visual tracking neurons in the posterior parietal association cortex of the monkey. Neurosci Lett 17:55–60.PubMedCrossRefGoogle Scholar
  132. Kawasaki T, Sato Y (1981) Afferent projections to the caudal part of the dorsal nucleus of the raphe in cats. Brain Res 211:439–444.PubMedCrossRefGoogle Scholar
  133. Keane PE, Soubrié P (1997) Animal models of integrated serotonergic functions: their predictive value for the clinical applicability of drugs interfering with serotonergic transmission. In: Baumgarten HG, Gothert M (eds) Serotonergic neurons and 55-HT receptors in the CNS. Berlin: Springer, pp. 707–725.Google Scholar
  134. Kerman IA, Yates BJ (1998) Regional and functional differences in the distribution of vestibular-sympathetic reflexes. Am J Physiol Reg Integ Comp Physiol 44:R828–R835.Google Scholar
  135. Kevetter GA, Perachio AA (1989) Projections from the sacculus to the cochlear nuclei in the mongolian gerbil. Brain Behav Evol 34:193–200.PubMedGoogle Scholar
  136. Kirsten EB, Sharma JA (1976) Characteristics and response differences to iontophoretically applied norepinephrine, D-amphetamine and acetylcholine on neurons in the medial and lateral vestibular nuclei of the cat. Brain Res 112:77–90.PubMedCrossRefGoogle Scholar
  137. Kishimoto T, Sasa M, Takaori S (1991) Inhibition of lateral vestibular nucleus neurons by 5-hydroxytryptamine derived from the dorsal raphe nucleus. Brain Res 553:229–237.PubMedCrossRefGoogle Scholar
  138. Kolev OI, Altaparmakov IA (1996) Changes in the gastrointestinal electric pattern to motion sickness in susceptibles and insusceptibles during fasting. J Vestib Res 6:15–21.PubMedCrossRefGoogle Scholar
  139. Korner PI (1971) Integrative neural cardiovascular control. Physiol Rev 51:312–367.PubMedGoogle Scholar
  140. Kotchabhakdi N, Walberg F (1978) Cerebellar afferent projections from the vestibular nuclei in the cat: an experimental study with the method of retrograde axonal transport of horseradish peroxidase. Exp Brain Res 31:591–604.PubMedGoogle Scholar
  141. Kothe AC (1994) The effect of posture on intraocular pressure and pulsatile ocular blood flow in normal and glaucomatous eyes. Surv Ophthalmol Suppl 38:S191–S197.Google Scholar
  142. Kothe AC, Lovasik JV (1988) Neural effects of body inversion: photopic oscillatory potentials. Curr Eye Res 7:1221–1229.PubMedGoogle Scholar
  143. Krieglstein GK, Langham ME (1975) Influence of body position on the intraocular pressure of normal and glaucomatous eyes. Ophthalmologica (Basel) 171:132–145.Google Scholar
  144. Kummer W, Fischer A, Kurkowski R, Heym C (1992) The sensory and sympathetic innervation of the guinea-pig lung and trachea as studied by retrograde neuronal tracing and double-labelling immunohistochemistry. Neuroscience 49:715–737.PubMedCrossRefGoogle Scholar
  145. Kuo DC, DeGroat WC (1985) Primary afferent projections of the major splanchnic nerve to the spinal cord and nucleus gracilis of the cat. J Comp Neurol 231: 421–434.PubMedCrossRefGoogle Scholar
  146. Kuo DC, Nadelhaft I, Hisamitsu T, DeGroat WC (1983) Segmental distribution and central projections of renal afferent fibers in the cat studied by transganglionic transport of horseradish peroxidase. J Comp Neurol 216:162–174.PubMedCrossRefGoogle Scholar
  147. Kuo DC, Oravitz JJ, DeGroat WC (1984) Tracing of afferent and efferent pathways of the left inferior cardiac nerve of the cat using retrograde and transganglionic transport of horseradish peroxidase. Brain Res 321:111–118.PubMedCrossRefGoogle Scholar
  148. La Noce A, Bradley DJ, Goring MA, Spyer KM (1991) The influence of lobule IX of the cerebellar posterior vermis on the baroreceptor reflex in the decerebrate rabbit. J Auton Nerv Syst 32:31–36.PubMedGoogle Scholar
  149. Lam AKC, Douthwaite WA (1997) Does the change of anterior chamber depth or/and episcleral venous pressure cause intraocular pressure change in postural variation? Optom Vis Sci 74:664–667.PubMedGoogle Scholar
  150. Langham ME (1975) Vascular pathology of the ocular postural response. A pneumotonographic study. Trans Ophthalmol Soc U K 95:281–287.PubMedGoogle Scholar
  151. Leigh RJ, Zee DS (1991) The Neurology of Eye Movements, second edition Contemporary Neurology Series No. 35. Philadelphia: Davis.Google Scholar
  152. Leoni Lunensis D (1576) Ars medendi humanos, particuaresque; morbos à capite, usque; ad pedes. Bononiae: Apud Io. Rossium.Google Scholar
  153. Licata F, LiVolsi G, Maugeri G, Ciranna L, Santangelo F (1993a) Serotonin-evoked modifications of the neuronal firing rate in the superior vestibular nucleus. Neuroscience 52:941–949.PubMedCrossRefGoogle Scholar
  154. Licata F, LiVolsi G, Maugeri G, Ciranna L, Santangelo F (1993b) Effects of noradrenaline on the firing rate of vestibular neurons. Neuroscience 53:149–158.PubMedCrossRefGoogle Scholar
  155. Licata F, LiVolsi G, Maugeri G, Ciranna L, Santangelo F (1993c) Effects of 5-hydroxytryptamine on the firing rates of neurons in the lateral vestibular nucleus of rats. Exp Brain Res 79:293–298.Google Scholar
  156. Licata F, LiVolsi G, Maugeri G, Santangelo F (1995) Neuronal responses in vestibular nuclei to dorsal raphe electrical stimulation. J Vestib Res 5:137–145.PubMedCrossRefGoogle Scholar
  157. Linder BJ, Trick GL (1987) Simulation of spaceflight with whole-body head-down tilt: influence on intraocular pressure and retinocortical processing. Aviat Space Environ Med Suppl 58:A139–A142.Google Scholar
  158. Linder BJ, Trick GL, Wolf ML (1988) Altering body position affects intraocular pressure and visual function. Invest Ophthalmol Vis Sci 29:1492–1497.PubMedGoogle Scholar
  159. Lloyd TC (1983) Effect of inspiration on inferior caval blood flow in dogs. J Appl Physiol 55:1701–1708.PubMedGoogle Scholar
  160. Loewy AD, Spyer KM (1990) Central Regulation of Autonomic Functions. New York: Oxford University Press.Google Scholar
  161. Lovasik JV, Kothe AC (1989) Ocular refraction with body orientation. Aviat Space Environ Med 60:321–328.PubMedGoogle Scholar
  162. Lynch JC, Mountcastle VB, Talbot WH, Yin TCT (1977) Parietal lobe mechanisms for directed visual attention. J Neurophysiol 40:362–389.PubMedGoogle Scholar
  163. Mameli O, Tolu E (1985) Visual input to the hypoglossal nucleus. Exp Neurol 90:341–349.PubMedCrossRefGoogle Scholar
  164. Mameli O, Tolu E (1986) Vestibular ampullary modulation of hypoglossal neurons. Physiol Behav 37:773–775.PubMedCrossRefGoogle Scholar
  165. Mameli O, Tolu E (1987) Hypoglossal responses to macular stimulation in the rabbit. Physiol Behav 39:273–275.PubMedCrossRefGoogle Scholar
  166. Mameli O, Tolu E, Melis F, Caria MA (1988) Labyrinthine projection to the hypoglossal nucleus. Brain Res Bull 20:83–88.PubMedCrossRefGoogle Scholar
  167. Manzoni D, Pompeiano O, Stampacchia G, Srivastava UC (1983) Responses of medullary reticulospinal cells to sinusoidal stimulation of labyrinth receptors in decerebrate cat. J Neurophysiol 50:1059–1079.PubMedGoogle Scholar
  168. Manzoni D, Pompeiano O, Barnes CD, Stampacchia G, D’Ascanio P (1989a) Convergence and interaction of neck and macular vestibular inputs on locus coeruleus and subcoeruleus neurons. Pflügers Arch 413:580–598.PubMedCrossRefGoogle Scholar
  169. Manzoni D, Pompeiano O, Barnes CD, Stampacchia G, D’Ascanio P (1989b) Responses of locus coeruleus neurons to convergent neck and vestibular inputs. Acta Otolaryngol (Stockh) 468:129–135.Google Scholar
  170. Markham CH, Estes MS, Blanks RHI (1973) Vestibular influences on ocular accommodation in cats. Int J Equilibrium Res 3:102–115.Google Scholar
  171. Markham CH, Diamond SG, Simpson NE (1977) Ocular accommodative changes in humans induced by positional changes with respect to gravity. Electroencephalog Clin Neurophysiol 42:332–340.Google Scholar
  172. Mayo H (1837) Outlines of Human Physiology, Fourth edition. London: Henry Renshaw and J. Churchill.Google Scholar
  173. McKelvey-Briggs DK, Saint-Cyr JA, Spence SJ, Partlow GD (1989) A reinvestigation of the spinovestibular projection in the cat using axonal transport techniques. Anat Embryol 180:281–291.PubMedCrossRefGoogle Scholar
  174. Megirian D (1968) Vestibular control of laryngeal and phrenic motoneurons of cat. Arch Ital Biol 106:333–342.PubMedGoogle Scholar
  175. Megirian D, Manning JW (1967) Input-output relations in the vestibular system. Arch Ital Biol 105:15–30.PubMedGoogle Scholar
  176. Merrill EG (1974) Finding a respiratory function for the medullary respiratory neurons. In: Bellairs R, Gray EG (eds) Essays on the Nervous System. Oxford: Clarendon, pp. 451–486.Google Scholar
  177. Miller AD, Yamaguchi T, Siniaia MS, Yates BJ (1995) Ventral respiratory group bulbospinal inspiratory neurons participate in vestibular-respiratory reflexes. J Neurophysiol 73:1303–1307.PubMedGoogle Scholar
  178. Miller AD, Nonaka S, Jakus J, Yates BJ (1996) Modulation of vomiting by the medullary midline. Brain Res 737:51–58.PubMedCrossRefGoogle Scholar
  179. Mittelstaedt H (1996) Somatic graviception. Biol Psychol 42:53–74.PubMedCrossRefGoogle Scholar
  180. Mittelstaedt H, Glasauer S (1993) Illusions of verticality in weightlessness. Clin Invest 71:732–739.CrossRefGoogle Scholar
  181. Mixter G (1953) Respiratory augmentation of inferior venal caval flow demonstrated by a low-resistance phasic flowmeter. Am J Physiol 172:446–456.PubMedGoogle Scholar
  182. Miyazaki T, Yoshida YHMST, Kanaseki T (1981) Central location of the motoneurons supplying the thyrohyoid and the geniohyoid muscles as demonstrated by horseradish peroxidase method. Brain Res 219:423–427.PubMedCrossRefGoogle Scholar
  183. Moore RY, Bloom FE (1979) Central catecholamine neuron systems: anatomy and physiology of the norepinephrine and epinephrine systems. Annu Rev Neurosci 2:113–168.PubMedCrossRefGoogle Scholar
  184. Moreno AH, Burchell AR, Burke JH (1967) Respiratory regulation of splanchnic and systemic venous return. Am J Physiol 213:455–465.PubMedGoogle Scholar
  185. Moruzzi G (1938) Action inhibitrice du paléocervelet sur les réflexes circulatoires et respiratoires d’origine sino-carotidienne. C R Soc Belge Biol 128: 533–538Google Scholar
  186. Moruzzi G (1940) Paleocerebellar inhibition of vasomotor and respiratory carotid sinus reflexes. J Neurophysiol 3:20–32.Google Scholar
  187. Moruzzi G (1950) Problems in Cerebellar Physiology. Springfield, IL: Charles C. Thomas.Google Scholar
  188. Motter B, Mountcastle VB (1981) The functional properties of the light-sensitive neurons of the posterior parietal cortex studied in waking monkeys: foveal sparring and opponent vector organization. J Neurosci 1:3–26.PubMedGoogle Scholar
  189. Nakazawa K, Zheng Y, Umezaki T, Miller AD (1997) Vestibular inputs to bulbar respiratory interneurons in the cat. Neuroreport 8:3395–3398.PubMedGoogle Scholar
  190. Nelson JG (1968) Effect of water immersion and body position upon perception of the gravitational vertical. Aerosp Med 39:806–811.PubMedGoogle Scholar
  191. Neuhuber WL, Zenker W (1989) Central distribution of cervical primary afferents in the rat, with emphasis on proprioceptive projections to vestibular, perihypoglossal, and upper thoracic spinal nuclei. J Comp Neurol 280:231–253.PubMedCrossRefGoogle Scholar
  192. Nicholas AP, Pieribone VA, Hökfelt T (1993a) Cellular localization of messenger RNA for beta-1 and beta-2 adrenergic receptors in rat brain: an in situ hybridization study. Neuroscience 56:1024–1039.CrossRefGoogle Scholar
  193. Nicholas AP, Pieribone VA, Hökfelt T (1993b) Distribution of mRNAs for alpha-2 adrenergic receptor subtypes in rat brain: an in situ hybridization study. J Comp Neurol 328:575–594.PubMedCrossRefGoogle Scholar
  194. Nisimaru N (1977) Depressant action of the posterior lobe of the cerebellum upon renal sympathetic nerve activity. Brain Res 133:371–375.PubMedCrossRefGoogle Scholar
  195. Nisimaru N, Watanabe Y (1985) A depressant area in the lateral nodulus-uvula of the cerebellum for renal sympathetic nerve activity and systemic blood pressure in the rabbit. Neurosci Res 3:177–181.PubMedCrossRefGoogle Scholar
  196. Nisimaru N, Yamamoto M, Shimoyama I (1984) Inhibitory effects of cerebellar cortical stimulation on sympathetic nerve activity in rabbits. Jpn J Physiol 34:539–551.PubMedGoogle Scholar
  197. Nisimaru N, Okahara K, Nagao S (1991) Olivocerebellar projection to the cardiovascular zone of rabbit cerebellum. Neurosci Res 12:240–250.PubMedCrossRefGoogle Scholar
  198. Noda H, Fujikado T (1987) Topography of the oculomotor area of the cerebellar vermis in macaques as determined by microstimulation. J Neurophysiol 58: 359–378.PubMedGoogle Scholar
  199. Okahara K, Nisimaru N (1991) Climbing fiber responses evoked in lobule VII of the posterior cerebellum from the vagal nerve in rabbits. Neurosci Res 12:232–239.PubMedCrossRefGoogle Scholar
  200. Paige GD, Tomko DL (1991a) Eye movement responses to linear head motion in the squirrel monkey. I. Basic characteristics. J Neurophysiol 65:1170–1182.PubMedGoogle Scholar
  201. Paige GD, Tomko DL (1991b) Eye movement responses to linear head motion in the squirrel monkey. II. Visual-vestibular interactions and kinematic considerations. J Neurophysiol 65:1183–1196.PubMedGoogle Scholar
  202. Paintal AS (1973) Vagal sensory receptors and their reflex effects. Physiol Rev 53:159–227.PubMedGoogle Scholar
  203. Paton JFR, LaNoce A, Sykes RM, Sebastiani L, Bagnoli P, Gherlarducci B, Bradley DJ (1991) Efferent connections of lobule IX of the posterior cerebellar cortex in the rabbit—some functional considerations. J Auton Nerv Syst 36:209–224.PubMedCrossRefGoogle Scholar
  204. Pazos A, Palacios J (1985a) Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. Serotonin-1 receptors. Brain Res 346:205–230.PubMedGoogle Scholar
  205. Pazos A, Palacios J (1985b) Quantitative autoradiographic mapping of serotonin receptors in the rat brain. II. Serotonin-2 receptors. Brain Res 346:231–249.PubMedGoogle Scholar
  206. Person RJ (1989) Somatic and vagal afferent convergence on solitary tract neurons in cat: electrophysiological characteristics. Neuroscience 30:283–295.PubMedCrossRefGoogle Scholar
  207. Pfaller K, Arvidsson J (1988) Central distribution of trigeminal as upper cervical primary afferents in the rat studied by anterograde transport of horseradish peroxidate conjugated to wheat germ agglutinin. J Comp Nerol 268:91–108.Google Scholar
  208. Pollack LL, Boshes B, Zivin I, Pyzik SW, Finkle JR, Tigay ELKBH, Arieff AJ, Finkelman I, Brown M, Dobin NB (1955) Body reflexes acting on the body. AMA Arch Neurol Psychiatry 74:527–533.Google Scholar
  209. Pompeiano O, Manzoni D, Srivastava UC, Stampacchia G (1984) Convergence and interaction of neck and macular vestibular inputs on reticulospinal cells. Neuroscience 12:111–128.PubMedCrossRefGoogle Scholar
  210. Pompeiano O, Mazoni S, Marchand AR, Stampacchia G (1987) Effects of roll tilt and neck rotation on different size vestibulospinal neurons in decerebrate cats with the cerebellum intact. Pflügers Arch 409:24–38.PubMedCrossRefGoogle Scholar
  211. Porter JD, Balaban CD (1997) Connections between the vestibular nuclei and regions that mediate autonomic function in the rat. J Vestib Res 7:63–76.PubMedCrossRefGoogle Scholar
  212. Prabhakar NR, Marek W, Lowschcke HH (1985) Altered breathing pattern elicited by stimulation of abdominal visceral afferents. J Appl Physiol 58:1755–1760.PubMedGoogle Scholar
  213. Ramu A, Bergmann F (1966) The role of the cerebellum in blood pressure regulation. Experientia 23:383–384.Google Scholar
  214. Rasheed BMA, Manchanda SK, Anand BK (1970) Effects of stimulation of paleocerebellum on certain vegetative functions in the cat. Brain Res 20:293–308.PubMedCrossRefGoogle Scholar
  215. Revelette R, Reynolds S, Brown D, Taylor R (1992) Effect of abdominal compression on diaphragmatic tendon organ activity. J Appl Physiol 72:288–292.PubMedGoogle Scholar
  216. Road JD (1990) Phrenic afferents and ventilatory control. Lung 168:137–149.PubMedGoogle Scholar
  217. Rocco AG, Vandam LD (1954) Changes in circulation consequent to manipulation during abdominal surgery. JAMA 164:14–18.Google Scholar
  218. Ross HE, Crickmar SD, Sills NV, Owen EP (1969) Orientation to the vertical in free divers. Aerosp Med 40:728–732.PubMedGoogle Scholar
  219. Rossiter CD, Yates BJ (1996) Vestibular influences on hypoglossal nerve activity in the cat. Neurosci Lett 211:25–28.PubMedCrossRefGoogle Scholar
  220. Rossiter CD, Hayden NL, Stocker SD, Yates BJ (1996) Changes in outflow to respiratory muscles produced by natural vestibular stimulation. J Neurophysiol 76:3274–3284.PubMedGoogle Scholar
  221. Ruggiero DA, Mtui EP, Otake K, Anwar M (1996) Vestibular afferents to the dorsal vagal complex: substrate for vestibulo-autonomic interactions in the rat. Brain Res 743:294–302.PubMedCrossRefGoogle Scholar
  222. Saint-Cyr JA, Woodward DJ (1980a) Activation of mossy and climbing fiber pathways to the cerebellar cortex by stimulation of the fornix in the rat. Exp Brain Res 40:1–12.PubMedGoogle Scholar
  223. Saint-Cyr JA, Woodward DJ (1980b) A topographic analysis of limbic and somatic inputs to the cerebellar cortex in the rat. Exp Brain Res 40:13–22.PubMedGoogle Scholar
  224. Sanborn GE, Friberg TR, Allen R (1987) Optic nerve dysfunction during gravity inversion. Arch Ophthalmol 105:774–776.PubMedGoogle Scholar
  225. Sato A (1997) Neural mechanisms of autonomic responses elicited by somatic sensory information. Neurosci Behav Physiol 27:610–621.PubMedGoogle Scholar
  226. Schöne H (1964) On the role of gravity in human spatial orientation. Aerosp Med 35:764–772.Google Scholar
  227. Schor RH, Steinbacher BC Jr, Yates BJ (1998) Horizontal linear and angular responses of neurons in the medial vestibular nucleus of the decerebrate cat. J Vestib Res 8(1):107–116.PubMedGoogle Scholar
  228. Schreihofer AM, Sved AF (1994) The use of sinoaortic denervation to study the role of baroreceptors in cardiovascular regulation-special communication. Am J Physiol 266:R1705–R1710.PubMedGoogle Scholar
  229. Schuerger RJ, Balaban CD (1993) Noradrenergic projections to the vestibular nuclei in monkey. Soc Neurosci Abstr 19:136.Google Scholar
  230. Schuerger RJ, Balaban CD (1999) Organization of the coeruleo-vestibular pathway in rats, rabbits and monkeys. Brain Res Rev 30:189–217.PubMedCrossRefGoogle Scholar
  231. Scott AB, Morris A (1967) Visual field changes produced by artificially elevated intraocular pressure. Am J Ophthalmol 63:308–312.PubMedGoogle Scholar
  232. Searles RV, Balaban CD, Severs WB (1996) Interaction between head-down tilt and anterior chamber infusions on intraocular pressure of anesthetized rats. Exp Eye Res 62:621–626.PubMedCrossRefGoogle Scholar
  233. Sebastiani L, La Noce A, Paton JFR, Gherlarducci B (1992) Influence of the cerebellar posterior vermis on the acquisition of the classically conditioned bradycardic response in the rabbit. Exp Brain Res 88:193–198.PubMedCrossRefGoogle Scholar
  234. Seltzer JL, Ritter DE, Starsnic MA, Marr AT (1985) The hemodynamic response to traction on the abdominal mesentery. Anesthesiology 63:96–99.PubMedGoogle Scholar
  235. Shiba K, Siniaia MS, Miller AD (1996) Role of ventral respiratory group bulbospinal expiratory neurons in vestibular-respiratory reflexes. J Neurophysiol 76:2271–2279.PubMedGoogle Scholar
  236. Shinoda Y, Ohgaki T, Futami T (1986) The morphology of single lateral vestibulospinal tract axons in the lower cervical spinal cord of the cat. J Comp Neurol 249:226–241.PubMedCrossRefGoogle Scholar
  237. Shinoda Y, Ohgaki T, Sugiuchi Y, Futami T (1989) Comparison of the branching patterns of lateral and medial vestibulospinal tract axons in the cervical spinal cord. Prog Brain Res 80:137–147.PubMedGoogle Scholar
  238. Siegel RE (1976) Galen On the Affected Parts. Translation of De locis affectus. Basel: S. Karger, pp. 98–99.Google Scholar
  239. Siniaia MS, Miller AD (1996) Vestibular effects on upper airway musculature. Brain Res 736:160–164.PubMedCrossRefGoogle Scholar
  240. Smith BH (1953) Nature and treatment of the celiac-plexus reflex in man. Lancet 2:223–227.Google Scholar
  241. Sokolov YN (1963) Perception and the Conditioned Reflex. New York: Pergamon Press/MacMillan Company.Google Scholar
  242. Somana R, Walberg F (1979) The cerebellar projection from the parabrachial nucleus in the cat. Brain Res 172:144–149.PubMedCrossRefGoogle Scholar
  243. Spiegel EA (1936) Respiratory reactions upon vertical movements. Am J Physiol 117:349–354.Google Scholar
  244. Spiegel EA (1946) Effect of labyrinthine reflexes on the vegetative nervous system. Arch Otolaryngol 44:61–72.Google Scholar
  245. Spiegel EA, Démétriades TD (1922) Beiträge zum Studium des vegetativen Nervensystems. III. Metteilung. Der einflub des Vestibularapparates auf das Gefäβsystem. Pflügers Arch 196:185–199Google Scholar
  246. Spiegel EA, Démétriades TD (1924) Beiträge zum Studium des vegetativen Nervensystems. VII. Metteilung. Der zentrale Mechanismus der vestibulären Blutdrucksenkung und ihre Bedeutung für die Entstehung des Labyrinthschwindels. Pflügers Arch 205:328–337CrossRefGoogle Scholar
  247. Spiegel EA, Sommer I (1944) Vestibular mechanisms. In: Glasser O (ed) Medical Physics. Chicago: Year Book Publishers, Volume 1, pp. 1638–1653.Google Scholar
  248. Steinbacher BC, Yates BJ (1996a) Brainstem neurons necessary for vestibular influences on sympathetic outflow. Brain Res 720:204–210.PubMedGoogle Scholar
  249. Steinbacher BC, Yates BJ (1996b) Processing of vestibular and other inputs by the caudal ventrolateral reticular formation. Am J Physiol Regul Integ Comp Physiol 40:R1070–R1077.Google Scholar
  250. Steinbusch HWM (1991) Distribution of histaminergic neurons and fibers in rat brain. Comparison with noradrenergic and serotonergic innervation of the vestibular system. Acta Otolaryngol (Stockh) Suppl 479:12–23.Google Scholar
  251. Stewart TG (1898) Lectures on Giddiness and Hysteria in the Male, second edition. Edinburgh and London: Young J. Pentland.Google Scholar
  252. Stocker SD, Steinbacher BC, Balaban CD, Yates BJ (1997) Connections of the caudal ventrolateral medullary reticular formation in the cat brainstem. Exp Brain Res 116:270–282.PubMedCrossRefGoogle Scholar
  253. Stürup G, Bolton B, Williams DJ, Carmichael EA (1935) Vasomotor responses in hemiplegic patients. Brain 58:456–469.Google Scholar
  254. Supple WF Jr, Kapp BS (1994) Anatomical and physiological relationships between the anterior cerebellar vermis and the pontine parabrachial nucleus in the rabbit. Brain Res Bull 33:561–574.PubMedCrossRefGoogle Scholar
  255. Supple WF Jr, Leaton RN (1990) Cerebellar vermis: essential for classically conditioned bradycardia in the rat. Brain Res 509:17–23.PubMedCrossRefGoogle Scholar
  256. Takata M, Robotham JL (1992) Effects of diaphragm descent on inferior vena caval venous return. J Appl Physiol 72:597–607.PubMedGoogle Scholar
  257. Tan J, Gerrits NM, Nanhoe R, Simpson JI, Voogd J (1995) Zonal organization of the climbing fiber projection to the flocculus and nodulus of the rabbit: a combined axonal tracing and acetylcholinesterase histochemistry tracing study. J Comp Neurol 356:23–50.PubMedGoogle Scholar
  258. Tang PC, Gernandt BE (1969) Autonomic responses to vestibular stimulation. Exp Neurol 24:558–578.PubMedCrossRefGoogle Scholar
  259. Thompson DG, Richelson E, Malagelada J-R (1982) Perturbation of gastric emptying and duodenal motility through the central nervous system. Gastroenterology 83:1200–1206.PubMedGoogle Scholar
  260. Tong G, Robertson LT, Brons J (1993) Climbing fiber representation of the renal afferent nerve in the vermal cortex of the cat cerebellum. Brain Res 601:65–75.PubMedCrossRefGoogle Scholar
  261. Uchino Y, Kudo N, Tsuda K, Iwamura Y (1970) Vestibular inhibition of sympathetic nerve activities. Brain Res 22:195–206.PubMedCrossRefGoogle Scholar
  262. Uemura M, Matsuda K, Kume M, Takeuchi Y, Matsushima R, Mizuno N (1979) Topographical arrangement of hypoglossal motoneurons: an HRP study in the cat. Neurosci Lett 13:99–104.PubMedCrossRefGoogle Scholar
  263. Umezaki T, Zheng Y, Shiba K, Miller AD (1997) Role of nucleus retroambigualis in respiratory reflexes evoked by superior laryngeal and vestibular nerve afferents in emesis. Brain Res 769:347–356.PubMedCrossRefGoogle Scholar
  264. Ventre J, Faugier-Grimaud S (1988) Projections of the temporo-parietal cortex on vestibular complex in the macaque monkey (Macaca fascicularis). Exp Brain Res 72:653–658.PubMedCrossRefGoogle Scholar
  265. Waldrop TG, Eldridge FL, Iwamoto GA, Mitchell JH (1996) Central neural control of respiration and circulation during exercise. In: Rowell LB, Shepherd JT (eds) Handbook of Physiology, Section 12: Exercise: Regulation and Integration of Multiple Systems. New York: American Physiological Society/Oxford University Press, pp. 333–380.Google Scholar
  266. Wanaka A, Kiyama H, Murakami T, Matsumoto M, Kamada T, Malbon CC, Tohyama M (1989) Immunohistochemical localization of b-adrenergic receptors in rat brain. Brain Res 485:125–140.PubMedCrossRefGoogle Scholar
  267. West JB (1977) Regional Differences in the Lung. New York: Academic Press.Google Scholar
  268. West JB, Elliott AR, Guy HJB, Prisk GK (1997) Pulmonary function in space. JAMA 277:1957–1961.PubMedCrossRefGoogle Scholar
  269. Wiggers K (1943) The influence of the cerebellum on the heart and circulation of the blood. II. Arch Physiol (Neerl) 27:301–303.Google Scholar
  270. Willis T (1692) The London Practice of Physick, being the Practical Part of Physick Contain’d in the Works of the Famous Dr. Willis. London: T. Basset, T. Dring, C. Harper and W Crook.Google Scholar
  271. Wilson VJ, Melvill Jones G (1979) Mammalian Vestibular Physiology. New York: Plenum.Google Scholar
  272. Wilson VJ, Yamagata Y, Yates BJ, Schor RH, Nonaka S (1990) Response of vestibular neurons to head rotations in vertical planes. III. Responses of vestibulocollic neurons to vestibular and neck stimulation. J Neurophysiol 64:1695–1703.PubMedGoogle Scholar
  273. Wolfe JW, Brown JH (1969) Effects of sleep deprivation on the vestibulo-ocular reflex. Aerosp Med 39:947–949.Google Scholar
  274. Woodring SF, Yates BJ (1997) Responses of ventral respiratory group neurons of the cat to natural vestibular stimulation. Am J Physiol Regul Integr Comp Physiol 42:R1946–R1956.Google Scholar
  275. Woodring SF, Rossiter CD, Yates BJ (1997) Pressor response elicited by nose-up vestibular stimulation in cats. Exp Brain Res 113:165–168.PubMedGoogle Scholar
  276. Woodworth RS, Schlosberg H (1954) Experimental Psychology (Revised edition). New York: Henry Holt and Company.Google Scholar
  277. Yamamoto C (1967) Pharmacologic studies of norepinephrine, acetylcholine and related compounds on neurons in Deiters’ nucleus and the cerebellum. J Pharmacol Exp Ther 156:39–47.PubMedGoogle Scholar
  278. Yates BJ, Miller AD (1994) Properties of sympathetic reflexes elicited by natural vestibular stimulation: implications for cardiovascular control. J Neurophysiol 71:2087–2092.PubMedGoogle Scholar
  279. Yates BJ, Mickle JP, Hedden WJ, Thompson FJ (1987) Tracing of afferent pathways from the femoral-saphenous vein to dorsal root ganglia using transport of horseradish peroxidase. J Auton Nerv Syst 20:1–11.PubMedCrossRefGoogle Scholar
  280. Yates BJ, Yamagata Y, Bolton PS (1991) The ventrolateral medulla of the cat mediates vestibulosympathetic reflexes. Brain Res 552:265–272.PubMedCrossRefGoogle Scholar
  281. Yates BJ, Goto T, Bolton PS (1993a) Responses of neurons in rostral ventrolateral medulla of the cat to natural stimulation. Brain Res 601:255–264.PubMedCrossRefGoogle Scholar
  282. Yates BJ, Goto T, Kerman I, Bolton PS (1993b) Responses of caudal medullary raphe neurons to natural vestibular stimulation. J Neurophysiol 70:938–946.PubMedGoogle Scholar
  283. Yates BJ, Jakus J, Miller AD (1993c) Vestibular effects on respiratory outflow in the decerebrate cat. Brain Res 629:209–217.PubMedCrossRefGoogle Scholar
  284. Yates BJ, Grelot L, Kerman IA, Balaban CD, Jakus J, Miller AD (1994) The organization of vestibular inputs to nucleus tractus solitarius (NTS) and adjacent structures in the cat brainstem. Am J Physiol 267:R974–R983.PubMedGoogle Scholar
  285. Yates BJ, Balaban CD, Miller AD, Endo K, Yamaguchi Y (1995a) Vestibular inputs to the lateral tegmental field of the cat: potential role in autonomic control. Brain Res 689:197–206.PubMedCrossRefGoogle Scholar
  286. Yates BJ, Siniaia MS, Miller AD (1995b) Descending pathways necessary for vestibular influences on sympathetic and inspiratory outflow. Am J Physiol Regul Integr Comp Physiol 37:R1381–R1385.Google Scholar
  287. Yates BJ, Jian BJ, Cotter LA, Cass SP (2000) Responses of vestibular nucleus neurons to tilt following chronic bilateral removal of vestibular inputs. Exp Brain Res 130:151–158.PubMedCrossRefGoogle Scholar
  288. Youmans WB, Tjioe DT, Tong EY (1974) Control of involuntary activity of abdominal muscles. Am J Phys Med 53:57–74.PubMedGoogle Scholar
  289. Zhang SP, Davis PJ, Carrive P, Bandler R (1992) Vocalization and marked pressor effect evoked from the region of nucleus retroambigualis in the caudal ventral medulla of the cat. Neurosci Lett 140:103–107.PubMedCrossRefGoogle Scholar
  290. Zheng Y, Umezaki T, Nakazawa K, Miller AD (1997) Role of pre-inspiratory neurons in vestibular and laryngeal reflexes and in swallowing and vomiting. Neurosci Lett 225:161–164.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 2004

Authors and Affiliations

  • C. D. Balaban
  • B. J. Yates

There are no affiliations available

Personalised recommendations