Skip to main content

Biomechanics of the Semicircular Canals and Otolith Organs

  • Chapter

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 19))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Art JJ, Fettiplace R (1984) Efferent desensitization of auditory nerve fibre responses in the cochlea of the turtle Pseudemys scripta elegans. J Physiol 356: 507–523.

    CAS  PubMed  Google Scholar 

  • Art JJ, Crawford AC, Fettiplace R, Fuchs PA (1985) Efferent modulation of hair cell tuning in the cochlea of the turtle. J Physiol 360:397–421.

    CAS  PubMed  Google Scholar 

  • Art JJ, Wu YC, Fettiplace R (1995) The calcium-activated potassium channels of turtle hair cells. J Gen Physiol 105:49–72.

    Article  CAS  PubMed  Google Scholar 

  • Assad JA, Shepherd GM, Corey DP (1991) Tip-link integrity and mechanical transduction in vertebrate hair cells. Neuron 7:985–994.

    Article  CAS  PubMed  Google Scholar 

  • Benser ME, Marquis RE, Hudspeth AJ (1996) Rapid, active hair bundle movements in hair cells from the bullfrog’s sacculus. J Neurosci 16:5629–5643.

    CAS  PubMed  Google Scholar 

  • Blanks RHI, Curthoys IS, Bennett ML, Markham CH (1985) Planar relationships of the semicircular canals in rhesus and squirrel monkeys. Brain Res 340: 315–324.

    Article  CAS  PubMed  Google Scholar 

  • Boyle R, Highstein SM (1990) Resting discharge and response dynamics of horizontal semicircular canal afferents of the toadfish, Opsanus tau. J Neurosci 10:1557–1569.

    CAS  PubMed  Google Scholar 

  • Breuer J (1874) Uber die funktion der bogengange des ohrlabyrinthes. Med Jahrb (Wien) 4:72–124.

    Google Scholar 

  • Brownell WE (1982) Cochlear transduction: an integrative model and review. Hear Res 6:335–360.

    Article  CAS  PubMed  Google Scholar 

  • Brownell WE (1990) Outer hair cell electromotility and otoacoustic emissions. Ear Hear 11:82–92.

    Article  CAS  PubMed  Google Scholar 

  • Brownell WE, Bader CR, Bertrand D, de Ribaupierre Y (1985) Evoked mechanical responses of isolated cochlear outer hair cell. Science 227:194–196.

    CAS  PubMed  Google Scholar 

  • Burns EM, Keefe DH, Ling R (1998) Energy reflectance in the ear canal can exceed unity near spontaneous otoacoustic emission frequencies. J Acoust Soc Am 103:462–474.

    CAS  PubMed  Google Scholar 

  • Camis M (1930) The Physiology of the Vestibular Apparatus. Oxford: Clarendon Press.

    Google Scholar 

  • Carlström D (1963) Crystallographic study of the vertebrate otoliths. Biol Bull 125:441–463.

    Google Scholar 

  • Corey DP, Garcia-Añoveros J (1996) Mechanosensation and the deg/enac ion channels. Science 273:323–324.

    CAS  PubMed  Google Scholar 

  • Cotton JR (1998) Mechanical models of vestibular hair cell bundles. Ph.D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.

    Google Scholar 

  • Cotton JR, Grant JW (2000) A finite element method for mechanical response of hair cell ciliary bundles. J Biomech Eng 144:44–50.

    Google Scholar 

  • Crawford JJ, Art AC, Fettiplace R, Fuchs PA (1982) Efferent regulation of hair cells in the turtle cochlea. Proc R Soc Lond B Biol Sci 216:377–384.

    PubMed  Google Scholar 

  • Cremer PD, Minor LB, Carey JP, Della Santina CC (2000) Eye movements in patients with superior canal dehiscence syndrome align with the abnormal canal. Neurology 55:1833–1841.

    CAS  PubMed  Google Scholar 

  • Crum-Brown A (1874) On the sense of rotation and the anatomy and physiology of the semicircular canals of the inner ear. J Anat Physiol 8:327–331.

    Google Scholar 

  • Curthoys IS, Oman CM (1987) Dimensions of the horizontal semicircular duct, ampulla and utricle in the human. Acta Otolaryngol (Stockh) 103:254–261.

    CAS  Google Scholar 

  • Curthoys IS, Markham CH, Curthoys EJ (1977) Semicircular canal duct and ampulla dimensions in cat, guinea pig and man. J Morphol 151:17–34.

    CAS  PubMed  Google Scholar 

  • Dallos P, He DZ, Lin X, Sziklai I, Mehta S, Evans BN (1997) Acetylcholine, outer hair cell electromotility, and the cochlear amplifier. J Neurosci 17:2212–2226.

    CAS  PubMed  Google Scholar 

  • Damiano ER (1999) A poroelastic continuum model of the cupula partition and the response dynamics of the vestibular semicircular canal. J Biomech Eng 121: 449–461.

    CAS  PubMed  Google Scholar 

  • Damiano ER, Rabbitt RD (1996) A singular perturbation model for fluid dynamics in the vestibular semicircular canal and ampulla. J Fluid Mech 307:333–372.

    Google Scholar 

  • Denk W, Holt JR, Shepherd GM, Corey DP (1995) Calcium imaging of single stereocilia in hair cells: localization of transduction channels at both ends of tip links. Neuron 15:1311–1321.

    Article  CAS  PubMed  Google Scholar 

  • De Vries HL (1950) Mechanics of the labyrinth organs. Acta Otolaryngol 38:262–273.

    Google Scholar 

  • Dickman JD (1996) Spatial orientation of semicircular canals and afferent sensitivity vectors in pigeons. Exp Brain Res 111:8–20.

    Article  CAS  PubMed  Google Scholar 

  • Dohlman GF (1971) The attachment of the cupula, otolith and tectorial membranes to the sensory cell areas. Acta Otolaryngol 71:89–105.

    CAS  PubMed  Google Scholar 

  • Dolgobrodov SG, Lukashkin AN, Russell IJ (2000a) Electrostatic interaction between stereocilia: I. Its role in supporting the structure of the hair bundle. Hear Res 150:94–103.

    CAS  PubMed  Google Scholar 

  • Dolgobrodov SG, Lukashkin AN, Russell IJ (2000b) Electrostatic interaction between stereocilia: II. Influence on the mechanical properties of the hair bundle. Hear Res 150:273–285.

    Google Scholar 

  • Duncan RK, Grant JW (1987) A finite element model of inner ear hair bundle micromechanics. Hear Res 104:15–26.

    Google Scholar 

  • Duncan RK, Eisen MD, Saunders JC (1999) Distal separation of chick cochlear hair cell stereocilia: analysis of contact-constraint models. Hear Res 127:22–30.

    Article  CAS  PubMed  Google Scholar 

  • Eatock RA (2000) Adaptation in hair cells. Annu Rev Neurosci 23:285–314.

    Article  CAS  PubMed  Google Scholar 

  • Eatock RA, Corey DP, Hudspeth AJ (1987) Adaptation of mechanoelectrical transduction in hair cells of the bullfrog’s sacculus. J Neurosci 7:2821–2836.

    CAS  PubMed  Google Scholar 

  • Engström H, Lindeman HH, Ades HW (1966) Anatomical features of the auricular sensory organs. In: Second Symposium on the Role of the Vestibular Organs in Space Exploration, SP-115. Moffett Field, CA: NASA Ames Research Center, pp. 33–46.

    Google Scholar 

  • Estes MS, Blanks RHI, Markham CH (1975) Physiologic characteristics of vestibular first-order neurons in the cat. I. Response plane determination and resting discharge characteristics. J Neurophysiol 38:1239–1249.

    Google Scholar 

  • Ezure K, Graf W (1984) A quantitative analysis of the spatial organization of the vestibuloocular reflexes in lateral-and frontal-eyed animals. I. Orientation of semicircular canals and extraocular muscles. Neuroscience 12:85–93.

    CAS  PubMed  Google Scholar 

  • Fay RR, Edds-Walton PL (1997) Directional response properties of saccular afferents of the toadfish, Opsanus tau. Hear Res 111:1–21.

    Article  CAS  PubMed  Google Scholar 

  • Fernández C, Goldberg JM ((1971) Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. II. Response to sinusoidal stimulation and dynamics of peripheral vestibular system. J Neurophysiol 34:661–675.

    PubMed  Google Scholar 

  • Fernández C, Goldberg JM (1976a) Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. I. Response to static tilts and to long-duration centrifugal force. J Neurophysiol 39:970–984.

    PubMed  Google Scholar 

  • Fernández C, Goldberg JM (1976b) Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. II. Directional selectivity and force-response relations. J Neurophysiol 39:985–995.

    PubMed  Google Scholar 

  • Freeman DM, Abnet CC (2000) Deformation of the isolated mouse tectorial membrane produced by oscillatory forces. Hear Res 144:29–46.

    PubMed  Google Scholar 

  • Freeman DM, Weiss TF (1990a) Hydrodynamic forces on hair bundles at low frequencies. Hear Res 48:17–30.

    CAS  PubMed  Google Scholar 

  • Freeman DM, Weiss TF (1990b) Hydrodynamic forces on hair bundles at high frequencies. Hear Res 48:31–36.

    CAS  PubMed  Google Scholar 

  • Fuchs PA, Evans MG (1988) Voltage oscillations and ionic conductances in hair cells isolated from the alligator cochlea. J Comp Physiol 164:151–163.

    Article  CAS  Google Scholar 

  • Garcia JA, Yee AG, Gillespie PG, Corey DP (1998) Localization of myosin-i beta near both ends of tip links in frog saccular hair cells. J Neurosci 18:8637–8647.

    CAS  PubMed  Google Scholar 

  • Ghanem TA (2002) Semicircular canal fluid compartment morphology, ionic composition and regulation in the oyster toadfish, Opsanus tau. Ph.D. Thesis, University of Utah, Salt Lake City, UT.

    Google Scholar 

  • Ghanem TA, Rabbitt RD, Tresco PA (1998) Three-dimensional reconstruction of the membranous vestibular labyrinth in the toadfish, Opsanus tau. Hear Res 124:27–43.

    Article  CAS  PubMed  Google Scholar 

  • Gillespie PG, Corey DP (1997) Myosin and adaptation by hair cells. Neuron 19:8637–8647.

    Article  Google Scholar 

  • Gillespie PG, Wagner MC, Hudspeth AJ (1993) Identification of a 120 kd hairbundle myosin located near stereociliary tips. Neuron 11:581–594.

    Article  CAS  PubMed  Google Scholar 

  • Goldberg JM, Desmadryl G, Baird RA, Fernández C (1990) The vestibular nerve of the chinchilla. V. Peripheral relation between afferent discharge properties and peripheral innervation patterns in the utricular macula. J Neurophysiol 63: 791–804.

    CAS  PubMed  Google Scholar 

  • Goldberg JM, Lysakowski A, Fernández C (1992) Structure and function of the vestibular nerve fibers in the chinchilla and squirrel monkey. Ann N Y Acad Sci 656:93–107.

    Google Scholar 

  • Goodman MB, Art JJ (1996a) Positive feedback by a potassium-selective inward rectifier enhances tuning in vertebrate hair cells. Biophys J 72:430–442.

    Google Scholar 

  • Goodman MB, Art JJ (1996b) Variations in the ensemble of potassium currents underlying resonance in turtle hair cells. J Physiol 497:395–412.

    CAS  PubMed  Google Scholar 

  • Grant JW, Cotton JR (1991) A model for otolith dynamic response with viscoelastic gel layer. J Vestib Res 1:139–151.

    CAS  Google Scholar 

  • Grant JW, Huang CC, Cotton JR (1994) Theoretical mechanical frequency response of the otolithic organs. J Vestib Res 4:137–151.

    CAS  PubMed  Google Scholar 

  • Gray AA (1907) The Labyrinth of Animals. London: J. and A. Churchill.

    Google Scholar 

  • Gray AA (1908) The Labyrinth of Animals. London: J. and A. Churchill.

    Google Scholar 

  • He DZ, Dallos P (1999) Development of acetylcholine-induced responses in neonatal gerbil outer hair cells. J Neurophysiol 81:1162–1170.

    CAS  PubMed  Google Scholar 

  • Helling K, Clarke AH, Watanabe N, Scherer H (2000) Morphological studies of the form of the cupula in the semicircular canal ampulla. HNO 48:822–827.

    Article  CAS  PubMed  Google Scholar 

  • Hess BJ, Lysakowski A, Minor LB, Angelaki DE (2000) Central versus peripheral origin of vestibulo-ocular reflex recovery flowing semicircular canal plugging in rhesus monkeys. J Neurophysiol 84:3078–3082.

    CAS  PubMed  Google Scholar 

  • Highstein SM, Rabbitt RD, Boyle R (1996) Determinants of semicircular canal affe ent response dynamics in the toadfish, Opsanus tau. J Neurophysiol 75:575–596.

    CAS  PubMed  Google Scholar 

  • Hillman DE, Lewis ER (1971) Morphological basis for a mechanical linkage in otolithic receptor transduction in the frog. Science 174:416–418.

    CAS  PubMed  Google Scholar 

  • Hillman DE, McLaren JW (1979) Displacement configuration of semicircular canal cupulae. Neuroscience 4:1989–2000.

    Article  CAS  PubMed  Google Scholar 

  • Hocohen N, Assad JA, Smith WJ, Corey DP (1989) Regulation of tension on hair-cell transduction channels: displacement and calcium dependence. J Neurosci 9:3988–3997.

    Google Scholar 

  • Holt JR, Corey DP (2000) Two mechanisms for transducer adaptation in vertebrate hair cells. Proc Natl Acad Sci U S A 97:11730–11735.

    Article  CAS  PubMed  Google Scholar 

  • Holt JR, Corey DP, Eatock RA (1997) Mechanoelectrical transduction and adaptation in hair cells of the mouse utricle, a low-frequency vestibular organ. J Neurosci 17:8739–8748.

    CAS  PubMed  Google Scholar 

  • Hudspeth AJ (1989) How the ear’s works work. Nature 341:397–404.

    Article  CAS  PubMed  Google Scholar 

  • Hudspeth AJ, Gillespie PG (1994) Pulling springs to tune transduction: adaptation by hair cells. Neuron 12:1–9.

    Article  CAS  PubMed  Google Scholar 

  • Hudspeth AJ, Logothetis NK (2000) Sensory systems. Curr Opin Neurobiol 10:631–641.

    Article  CAS  PubMed  Google Scholar 

  • Igarashi M (1966) Dimensional study of the vestibular end organ apparatus. In: Second Symposium on the Role of the Vestibular Organs in Space Exploration, SP-115. Moffett Field, CA: NASA Ames Research Center, pp. 47–54.

    Google Scholar 

  • Igarashi M (1967) Dimensional study of the vestibular apparatus. Laryngoscope 77:1806–1817.

    CAS  PubMed  Google Scholar 

  • Igarashi M, O-Uchi T, Alford BR (1981) Volumetric and dimensional measurements of vestibular structures in the squirrel monkey. Acta Otolaryngol 91:437–444.

    CAS  PubMed  Google Scholar 

  • Jaeger R, Takagi A, Haslwanter T (2002) Modeling the relation between head orientations and otolith responses in humans. Hear Res 173:29–42.

    Article  CAS  PubMed  Google Scholar 

  • Jaramillo F, Hudspeth AJ (1993) Displacement-clamp measurements of the forces exerted by gating springs in the hair bundle. Proc Natl Acad Sci USA 90:1330–1334.

    CAS  PubMed  Google Scholar 

  • Kachar B, Parakkal M, Fex J (1990) Structural basis for mechanical transduction in the frog vestibular sensory apparatus. I. The otolithic membrane. Hear Res 45:179–190.

    Article  CAS  PubMed  Google Scholar 

  • Kachar B, Parakkal M, Kurc M, Zhao Y, Gillespie PG (2000) High-resolution structure of hair-cell tip links. Proc Natl Acad Sci U S A 97:13336–13341.

    Article  CAS  PubMed  Google Scholar 

  • Kemp DT (1978) Stimulated acoustic emissions from within the human auditory system. J Acoust Soc Am 64:1386–1391.

    Article  CAS  PubMed  Google Scholar 

  • Kondrachuk AV (2001a) Finite element modeling of the 3d otolith structure. J Vestib Res 11:13–32.

    CAS  PubMed  Google Scholar 

  • Kondrachuk AV (2001b) Models of the dynamics of otolithic membrane and hair cell bundle mechanics. J Vestib Res 11:33–42.

    CAS  PubMed  Google Scholar 

  • Konishi T (1982) Ion and water control in cochlear endolymph. Am J Otolaryngol 3:434–443.

    CAS  PubMed  Google Scholar 

  • Kurc M, Farina M, Linus U, Kachar B (1999) Structural basis for mechanical transduction in the frog vestibular sensory apparatus. I. The organization of the otoconial mass. Hear Res 131:11–21.

    Article  CAS  PubMed  Google Scholar 

  • Lim DJ (1971) Vestibular sensory organs. A scanning electron microscopic investigation. Arch Otolaryngol 94:69–76.

    CAS  PubMed  Google Scholar 

  • Lim DJ (1973) Ultrastructure of the otolithic membrane and the cupula. A scanning electron microscopic observation. Adv Otorhinolaryngol 19:35–49.

    CAS  PubMed  Google Scholar 

  • Lim DJ (1979) Fine morphology of the otoconial membrane and its relationship to the sensory epithelium. Scanning Electron Microsc 3:929–938.

    Google Scholar 

  • Lim DJ (1984) The development and structure of the otoconia. In: Friedmann I, Ballantine J (eds) Ultrastructural Atlas of the Inner Ear. London: Butterworths.

    Google Scholar 

  • Lim DJ, Anniko M (1985) Developmental morphology of the mouse inner ear. A scanning electron microscopic observation. Acta Otolaryngol Suppl 422:1–69.

    CAS  PubMed  Google Scholar 

  • Lins U, Farina M, Kurc M, Riordan G, Thalmann R, Thalmann I, Kachar B (2000) The otoconia of the guinea pig utricle: internal structure, surface exposure, and interactions with the filament matrix. J Struct Biol 131:67–78.

    Article  CAS  PubMed  Google Scholar 

  • Lonsbury-Martin BL, Harris FP, Stagner BB, Hawkin MD, Martin GK (1990) Distortion-product emissions in humans. I. Basic properties in normally hearing subjects. Ann Otol Rhinol Laryngol 99:3–42.

    Google Scholar 

  • Lorente de Nó R (1927) Contribucion al estudio matematico del organo del equilibrio. Trab Publ En La 7:202–206.

    Google Scholar 

  • Lowenstein O, Saunders RD (1975) Otolith-controlled response from the first order neurons of the labyrinth of the bullfrog to changes in linear acceleration. Proc R Soc Lond B Biol Sci 191:475–505.

    CAS  PubMed  Google Scholar 

  • Ludwig J, Oliver D, Frank G, Llocker N, Gummer WW, Fakler B (2001) Reciprocal electromechanical properties of rat prestin: the motor molecule from rat outer hair cells. Proc Natl Acad Sci U S A 98:4178–4183.

    Article  CAS  PubMed  Google Scholar 

  • Mach E (1875) Grundlinien Der Lehre Von Den Bewegungsempfindugen. Leipzig: Engelmann.

    Google Scholar 

  • Manley GA (2000) Cochlear mechanisms from a phylogenetic viewpoint. Proc Natl Acad Sci U S A 97:11736–11743.

    Article  CAS  PubMed  Google Scholar 

  • Manley GA, Gallo L (1997) Otoacoustic emissions, hair cells and myosin motors. J Acoust Soc Am 102:1049–1055.

    Article  CAS  PubMed  Google Scholar 

  • McLaren JW, Hillman DE (1979) Displacement of the semicircular canal cupula during sinusoidal rotation. Neuroscience 4:2001–2008.

    Article  CAS  PubMed  Google Scholar 

  • Minor LB, Cremer PD, Carey JP, Della Santina CC, Streubel SO, Weg N (2001) Symptoms and signs in superior canal dehiscence syndrome. Ann N Y Acad Sci 942:259–273.

    CAS  PubMed  Google Scholar 

  • Murugasu E, Russell IJ (1996) The effect of efferent stimulation on basilar membrane displacement in the basal turn of the guinea pig cochlea. J Neurosci 16:325–332.

    CAS  PubMed  Google Scholar 

  • Njeugna E, Eichhorn JL, Kopp C, Harlicot P (1992) Mechanics of the cupula: effects of its thickness. J Vestib Res 2:227–234.

    CAS  PubMed  Google Scholar 

  • Oman CM, Marcus EN, Curthoys IS (1987) The influence of semicircular canal morphology on endolymph flow dynamics. Acta Otolaryngol 103:1–13.

    CAS  PubMed  Google Scholar 

  • Patuzzi RB, Yates GK (1987) The low-frequency response of inner hair cells in the guinea pig cochlea: implications for fluid coupling and resonance of the stereocilia. Hear Res 30:83–98.

    CAS  PubMed  Google Scholar 

  • Peterson EH, Cotton JR, Grant JW (1996) Structural variation in ciliary bundles of the posterior semicircular canal. Quantitative anatomy and computational analysis. Ann N Y Acad Sci 781:85–102.

    CAS  PubMed  Google Scholar 

  • Pickles JO (1992) A model for the mechanics of the stereociliary bundle on acousticolateral hair cells. Hear Res 68:159–172.

    Google Scholar 

  • Platt C, Popper AN (1981) Fine structure and function of the ear. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and Sound Communication in Fishes. New York: Springer-Verlag, p. 3.

    Google Scholar 

  • Platt C, Popper AN (1984) Variations in lengths of ciliary bundles on hair cells along the macula of the sacculus in two species of teleost fishes. Scanning Electron Microsc 4:1915.

    Google Scholar 

  • Rabbitt RD (1999) Directional coding of three-dimensional movements by the vestibular semicircular canals. Biol Cybern 80:417–431.

    Article  CAS  PubMed  Google Scholar 

  • Rabbitt RD, Highstein SM, Boyle R (eds) (2000) Adaptation to maintained cupular displacements in semicircular canal hair cells US. Afferent nerves of the toadfish, opsanus tau. Midwinter Meeting of the Association for Research in Otolaryngology. Mt. Royal, NJ: Association for Research in Otolaryngology, p. 5664.

    Google Scholar 

  • Rabbitt RD, Highstein SM, Boyle R (1999) Influence of surgical plugging on horizontal semicircular canal mechanics and afferent response dynamics. J Neurophysiol 82:1033–1053.

    CAS  PubMed  Google Scholar 

  • Rabbitt RD, Highstein SM, Boyle R (2001a) Physiology of the semicircular canals after surgical plugging. Ann N Y Acad Sci 942:274–286.

    CAS  PubMed  Google Scholar 

  • Rabbitt RD, Yamauchi AM, Highstein SM, Boyle R (2001b) How endolymph pressure modulates semicircular canal primary afferent discharge. Ann N Y Acad Sci 942:313–321.

    CAS  PubMed  Google Scholar 

  • Rask-Anderson H, DeMott JE, Bagger-Sjöbäck D, Salt AN (1999) Morphological changes of the endolymphatic sac induced by microinjection of artificial endolymph into the cochlea. Hear Res 138:81–90.

    Google Scholar 

  • Reisine H, Simpson JI, Henn V (1988) A geometric analysis of semicircular canals and induced activity in their peripheral afferents in the rhesus monkey. Ann N Y Acad Sci 445:163–172.

    Google Scholar 

  • Retzius G (1881) Das Gehörorgan der Wirbeltiere. I. Das Gehörorgan der Fische und Amphibien. Stockholm: Centraldruckerei.

    Google Scholar 

  • Retzius G (1884) Das Gehörorgan der Wirbeltiere. II. Das Gehörorgan der Reptilien, der Vögel und der Säugetiere. Stockholm: Centraldruckerei.

    Google Scholar 

  • Ricci AJ, Crawford AC, Fettiplace R (2000) Active hair bundle motion linked to fast transducer adaptation in auditory hair cells. J Neurosci 20:7131–7142.

    CAS  PubMed  Google Scholar 

  • Salt AN (2001) Regulation of endolymphatic fluid volume. Ann N Y Acad Sci 942:306–312.

    CAS  PubMed  Google Scholar 

  • Salt AN, DeMott JE (2000) Ionic and potential changes of the endolymphatic sac induced by endolymph volume changes. Hear Res 149:46–54.

    Article  CAS  PubMed  Google Scholar 

  • Saunders JC, Dear SP (1983) Comparative morphology of stereocilia. In: Fay RR, Gourevitch G (eds) Hearing and Other Senses: Presentations in Honor of EG Wever. Groton: Amphora Press, p. 175.

    Google Scholar 

  • Silver RB, Reeves AP, Steinacker A, Highstein SM (1998) Examination of the cupula and stereocilia of the horizontal semicircular canal in the toadfish, Opsanus tau. Comp Neurol 402:48–61.

    CAS  Google Scholar 

  • Spector AA (1999) A nonlinear electroelastic model of the cochlear outer hair cell. Appl Mech Am 6:19–22.

    Google Scholar 

  • Spoendlin HH (1966) The ultrastructure of the vestibular sense organ. In: Wolfson RJ (ed) The Vestibular System and Its Diseases. Philadelphia: University of Pennsylvania Press, pp. 39–68.

    Google Scholar 

  • Steer RW, Li YT, Young LR (1967) Physical properties of the labyrinthine fluids and quantification of the phenomenon of caloric stimulation. In: Third Symposium on the Role of the Vestibular Organs in Space Exploration, SP-152. Moffett Field, CA: NASA Ames Research Center, pp. 409–420.

    Google Scholar 

  • Steinhausen W (1933) Über die beobachtungen der cupula in der bognegangsampullen des labyrinthes des libenden hecths. Pflügers Arch 232:500–512.

    Article  Google Scholar 

  • Steinhausen W (1934) Über die durch die otolithen ausgelösten kräfte. Pflügers Arch 235:538–544.

    Google Scholar 

  • Sziklai I, Ferrary E, Horner KC, Sterkers O, Amiel C (1992) Timerelated alteration of endolymph composition in an experimental model of endolymphatic hydrops. Laryngoscope 102:431–438.

    CAS  PubMed  Google Scholar 

  • Szymko Y, Dimitri P, Saunders J (1992) Stiffness of hair bundles in the chick cochlea. Hear Res 59:241–249.

    Article  CAS  PubMed  Google Scholar 

  • Tsuprun V, Santi P (2000) Helical structure of hair cell stereocilia tip link in the chinchilla cochlea. J Assoc Res Otolaryngol 21:224–231.

    Google Scholar 

  • Van Buskirk W (1987) Vestibular mechanics. In: Skalak R, Chien S (eds) Handbook of Bioengineering. New York: New York Academy of Sciences, pp. 31.1–31.17.

    Google Scholar 

  • Van Buskirk WC, Grant JW (1973) Biomechanics of the semicircular canals. Biomechanics Symposium. New York: American Society of Mechanical Engineers, pp. 53–54.

    Google Scholar 

  • Van Buskirk WC, Watts RG, Liu YK (1976) The fluid mechanics of the semicircular canals. J Fluid Mech 78:87–98.

    Google Scholar 

  • van Netten SM, Khanna SM (1994) Stiffness changes of the cupula associated with the mechanics of hair cells in the fish lateral line. Proc Natl Acad Sci USA 91:1549–1553.

    PubMed  Google Scholar 

  • von Gersdorff H, Matthews G (1999) Electrophysiology of synaptic vesicle cycling. Annu Rev Physiol 61:725–752.

    Google Scholar 

  • Weiss TF, Freeman DM (1997) Equilibrium behavior of an isotropic polyelectrolyte gel model of the tectorial membrane: effect of pH. Hear Res 111:55–64.

    Article  CAS  PubMed  Google Scholar 

  • Wersäll J, Bagger-Sjöbäck D (1974) Morphology of the vestibular sense organ. In: Kornhuber HH (ed) Handbook of Sensory Physiology: Vestibular System. New York: Springer-Verlag, pp. 123–170.

    Google Scholar 

  • Wilson VJ, Jones GM (1979) Mammalian Vestibular Physiology. New York: Plenum Press.

    Google Scholar 

  • Wright A (1984) Dimensions of the cochlear stereocilia in man and guinea pig. Hear Res 13:89–98.

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi AM (2002) Cupular Micromechanics and Motion Sensation in the Toadfish Vestibular Semicircular Canals. Salt Lake City: University of Utah.

    Google Scholar 

  • Yamauchi AM, Rabbitt RD, Boyle R, Highstein SM (2002) Relationship between inner-ear fluid pressure and semicircular canal afferent nerve discharge. J Assoc Res Otolaryngol 3:26–44.

    Article  CAS  PubMed  Google Scholar 

  • Zheng J, Shen W, He DZ, Long KB, Madison LD, Dallos P (2000) Prestin is the motor protein of cochlear outer hair cells. Nature 405:149–155.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Rabbitt, R.D., Damiano, E.R., Grant, J.W. (2004). Biomechanics of the Semicircular Canals and Otolith Organs. In: Highstein, S.M., Fay, R.R., Popper, A.N. (eds) The Vestibular System. Springer Handbook of Auditory Research, vol 19. Springer, New York, NY. https://doi.org/10.1007/0-387-21567-0_4

Download citation

  • DOI: https://doi.org/10.1007/0-387-21567-0_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98314-1

  • Online ISBN: 978-0-387-21567-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics