Advertisement

Calibration of Large Spatial Models: A Multistage, Multiobjective Optimization Technique

  • Ferdinando Villa
  • Alexey Voinov
  • Carl Fitz
  • Robert Costanza
Part of the Modeling Dynamic Systems book series (MDS)

Keywords

Objective Function Genetic Algorithm Parameter Space Response Surface Calibration Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Band, L.E., D.L. Peterson, S.W. Running, J. Coughlan, R. Lammers, J. Dungan, and R. Nemani. 1991. Forest ecosystem processes at the watershed scale: basis for distributed simulations. Ecological Modelling 56:171–196.CrossRefGoogle Scholar
  2. Beven, K.J. 1993. Prophecy, reality and uncertainty in distributed hydrological modelling. Advances in Water Resources 16:41–51.CrossRefGoogle Scholar
  3. Beven, K.J. and A.M. Binkley. 1992. The future of distributed models: model calibration and predictive uncertainty. Hydrology Proceedings 6:279–298.Google Scholar
  4. Binley, A.M., K.J. Beven, A. Calver, and L.G. Watts. 1991. Changing responses in hydrology: Assessing the uncertainty in physically-based predictions. Water Resources Research 27:1253–1261.CrossRefGoogle Scholar
  5. Bockstael, N., R. Costanza, I. Strand, W. Boynton, K. Bell, and L. Wainger. 1995. Ecological economic modeling and valuation of ecosystem. Ecological Economics 14:143–159.CrossRefGoogle Scholar
  6. Brent, R.P. 1973. Algorithms for Minimization Without Derivatives. Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
  7. Burke, I.C., W.K. Lauenroth, and W.J. Parton. 1997. Regional and temporal variation in net primary productivity and nitrogen mineralization in grasslands. Ecology 78: 1330–1340.CrossRefGoogle Scholar
  8. CERP Team. 2001. RECOVER (REstoration Coordination & VERification). Available from www.evergladesplan.org, accessed on January 1, 2002.Google Scholar
  9. Costanza, R., F.H. Sklar, and M.L. White. 1990. Modelling coastal landscape dynamics. BioScience 40:91–107.CrossRefGoogle Scholar
  10. Costanza, R., S.O. Funtowicz, and J.R. Ravetz. 1992. Assessing and communicating data quality in policy relevant research. Environmental Management 16:121–131.CrossRefGoogle Scholar
  11. Dent, J.B. and M.J. Blackie. 1979. System Simulation in Agriculture. Applied Science Publishers, London.Google Scholar
  12. Dixon, P.M. and K.A. Garrett. 1993. Sampling ecological information: choice of sample size, reconsidered. Ecological Modelling 68:67–73.CrossRefGoogle Scholar
  13. Fitz, H.C., and F.H. Sklar. 1999. Ecosystem analysis of phosphorus impacts and altered hydrology in the Everglades: A landscape modeling approach, in Phosphorus Biogeo-chemistry in Subtropical Ecosystems. (Reddy, K.R., G.A. O’Connor, and C.L. Schelske, eds.). Lewis Publishers, Boca Raton, FL, pp. 585–620.Google Scholar
  14. Fitz, H.C., E. DeBellevue, R. Costanza, R. Boumans, T. Maxwell, L. Wainger, and F. Sklar. 1996. Development of a general ecosystem model (GEM) for a range of scales and ecosystems. Ecological Modelling 88:263–295.CrossRefGoogle Scholar
  15. Forrest, S. 1993. Genetic algorithms: principles of natural selection applied to computation. Science 261:872–878.PubMedGoogle Scholar
  16. Gardner, R.H., D.D. Huff, R.V. O’Neill, J.B. Mankin, J. Carney, and J. Jones. 1980. Application of error analysis to a marsh hydrology model. Water Resources Research 16:659–664.Google Scholar
  17. Haefner, J.W. 1996. Modelling Biological Systems: Principles and Applications. Chapman & Hall, New York.Google Scholar
  18. Houck, C.R., J.A. Joines, and M.G. Kay, 1996. Comparison of genetic algorithms, random restart and two-opt switching for solving large location-allocation problems. Computers and Operations Research 23:587–596.CrossRefGoogle Scholar
  19. HPS. 1995. STELLA User’s Manual. High Performance Systems. Hanover, NH.Google Scholar
  20. HSM. 1999. A Primer to the South Florida Water Management Model (Version 3.5). Hydrologic Systems Modeling Division, South Florida Water Management District, West Palm Beach.Google Scholar
  21. Kuczera, G. 1990. Assessing hydrologic model nonlinearity using response surface plots. Journal of Hydrology 118:143–161.CrossRefGoogle Scholar
  22. Mankin, J.B., R.V. O’Neill, H.H. Shugart, and B.W. Rust. 1977. The importance of validation in ecosystem analysis, in New Directions in the Analysis of Ecological Systems. Part 1. Simulation Councils Proceeding Series. Vol. 5 (Innis, G.S., ed.). pp. 63–71.Google Scholar
  23. Maxwell, T. and R. Costanza 1997. An open geographic modelling environment. Simulation 68(3): 175–185.Google Scholar
  24. Melching, C.S., B.C. Yen, and H.G. Wenzel, Jr. 1990. Reliability estimation in modelling watershed runoff with uncertainties. Water Resources Research 26:2275–2280.CrossRefGoogle Scholar
  25. Melillo, J.M., A.D. McGuire, D.W. Kicklighter, B. Moore III, C.J. Vorosmarty, and A.L. Schloss. 1993. Global climate change and terrestrial net primary production. Nature 363:234–240.CrossRefGoogle Scholar
  26. Michalewicz, Z. 1996. Genetic Algorithms + Data Structures = Evolution Programs. Springer-Verlag, New York.Google Scholar
  27. Oreskes, N., K. Shrader-Frechette, and K Beliz. 1994. Verification, validation and confirmation of numerical models in the earth sciences. Science 263:641–646.PubMedGoogle Scholar
  28. Nelder, J.A. and R. Mead. 1965. A simplex method for function minimization. Computation Journal 7:308–313.Google Scholar
  29. Parton, W.J. and P.E. Rasmussen. 1994. Long-term effects of crop management in wheat-fallow: II. CENTURY model simulations. Soil Science Society of America Journal 58:530–536.CrossRefGoogle Scholar
  30. Press, W.H., B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, 1988. Numerical Recipes in C. Cambridge University Press, Cambridge.Google Scholar
  31. Raich, J.W., E.B. Rastetter, and J.M. Melillo. 1991. Potential net primary productivity in South America: Application of a global model. Ecological Applications 4:399–429.CrossRefGoogle Scholar
  32. Rice, J.A. and P.A. Cochran. 1984. Independent evaluation of a bioenergetics model for largemouth bass. Ecology 65:732–739.CrossRefGoogle Scholar
  33. Romesburg, H.C. 1981. Wildlife science: Gaining reliable knowledge. Journal of Wildlife Management 45(2):293–313.Google Scholar
  34. Rykiel, E.J. 1996. Testing ecological models: The meaning of validation. Ecological Modelling 90:229–244.CrossRefGoogle Scholar
  35. Scheaffer, R.L., W. Mendenhall, and L. Ott. 1986. Elementary Survey Sampling. PWS-Kent, Boston, MA.Google Scholar
  36. Sklar, F. H., and R. Costanza. 1991. The development of dynamic spatial models for landscape ecology: A review and prognosis, in Quantitative Methods in Landscape Ecology (Turner, M. G. and R. Gardner, eds.). Springer-Verlag, New York.Google Scholar
  37. Sorooshian, S. V.K. Gupta, and J.L. Fulton. 1983. Evaluation of maximum likelihood parameter estimation techniques for conceptual rainfall-runoff models: Influence of calibration data variability and length on model credibility. Water Resources Research 19:251–259.CrossRefGoogle Scholar
  38. Spear, R.C., 1997. Large simulation models: Calibration, uniqueness and goodness of fit. Environmental Modelling and Software 12:219–228.CrossRefGoogle Scholar
  39. Stadler, W. 1988. Fundamentals of multicriteria optimization, in Multicriteria Optimization in Engineering and in the Sciences (Stadler, W., ed.). Plenum Press, New York.Google Scholar
  40. Storie, R.E. 1976. Storie Index Soil Rating. Special Publication Division of Agricultural Science. University of California, Press, Berkeley.Google Scholar
  41. Tarantola, A. 1987. Inverse Problem Theory. Elsevier Science, Amsterdam.Google Scholar
  42. Theil, H. 1961. Economic Forecast and Policy. North-Holland, Amsterdam.Google Scholar
  43. USACE and SFWMD. 1998. Central and Southern Florida Project Comprehensive Review Study: Draft Integrated Feasibility Report and Programmatic Environmental Impact Statement. U.S. Army Corps of Engineers and South Florida Water Management District. Available from http://www.evergladesplan.org, accessed on January 1, 2002.
  44. Villa, F. 1997. Usage of the Model Performance Evaluation software. Internal report, Institute of Ecologica Economics, University of Maryland. Available from www.giee.uvm.edu/~villa/svp/svp.Google Scholar
  45. Voogd, H. 1983. Multicriteria Evaluation for Urban and Regional Planning. Pion Ltd., Amsterdam.Google Scholar
  46. Wang, Q.J. 1997. Using genetic algorithms to optimise model parameters. Environmental Modelling and Software 12:21–34.Google Scholar
  47. Yapo, P.O., H.V. Gupta, and S. Sorooshian, 1998. Multi-objective global optimization for hydrologic models. Journal of Hydrology 204:83–97.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 2004

Authors and Affiliations

  • Ferdinando Villa
  • Alexey Voinov
  • Carl Fitz
  • Robert Costanza

There are no affiliations available

Personalised recommendations