Landscape Optimization: Applications of a Spatial Ecosystem Model

  • Ralf Seppelt
  • Alexey Voinov
Part of the Modeling Dynamic Systems book series (MDS)


Local Optimum Solution Goal Function National Atmospheric Deposition Program Spatial Optimization Fertilizer Amount 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Band, L.E., D.L. Peterson, S.W. Running, J. Coughlan, R. Lammers, J. Dungan, and R. Nemani. 1991. Forest ecosystem processes at the watershed scale: basis for distributed simulation. Ecological Modelling 56:171–196.CrossRefGoogle Scholar
  2. Beven, K.J. and M.J. Kirkby. 1979. A physically-based, variable contributing area model of basin hydrology. Hydrological Sciences Bulletin 24(1):43–69.CrossRefGoogle Scholar
  3. Bevers, M., J. Hof, D.W. Uresk, and G.L. Schenbeck. 1997. Spatial optimization of prairie dog colonies for black-footed ferret recovery. Operations Research, 45:495–507.CrossRefGoogle Scholar
  4. Bulirsch, R., A. Miele, J. Stoer, and K.H. Well. 1993. Optimal control—Calculus of variations, optimal control theory and numerical methods. International Series of Numerical Mathematics, III, Birkhäuser; Basel.Google Scholar
  5. Burke, I.C., D.S. Schimel, C.M. Yonker, W.J. Parton, L.A. Joyce, and W.K. Lauenroth. 1990. Regional modeling of grassland biogeochemistry using GIS. Landscape Ecology 4(1):45–54.Google Scholar
  6. CBP. 2001. Chesapeake Bay Program. Available from
  7. R. Costanza, A. Voinov, R. Boumans, T. Maxwell, F. Villa, L. Wainger, and H. Voinov. 2001. Case study: Patuxent River watershed, Maryland. In R. Costanza, B. Low, E. Ostrom, and J. Wilson, Eds. Institutions, Ecosystems, and Sustainability. Lewis: Boca Raton, p. 179–230.Google Scholar
  8. Costanza, R., F.H. Sklar, and M.L. White. 1990. Modeling coastal landscape dynamics. BioScience 40(2):91–107.CrossRefGoogle Scholar
  9. Davis, J.C. 1984. Statistical Data Analysis in Geology. John Wiley & Sons: New York.Google Scholar
  10. Engel, B.A., R. Srinivasan, and C. Rewerts. 1993. A Spatial decision support systemor modeling and managing agricultural non-point-source pollution, in Environmental Modeling with GIS (Goodchild M.F., B.O.P., and L.T. Steyaert, eds.). Oxford University Press, Oxford.Google Scholar
  11. Fitz, H.C. and F.H. Sklar. 1999. Ecosystem analysis of phosphorus impacts and altered hydrology in the Everglades: A landscape modeling approach. 585–620 In K.R. Reddy, G.A. O’Connor, and C.L. Schelske, Eds. Phosphorus Biogeochemistry in Subtropical Ecosystems. Lewis Publishers: Boca Raton, FL., pp 585–620.Google Scholar
  12. Jaklitsch, F. (1997). Comprehensive Plan Calvert County, Maryland. Planning Commission. Available from
  13. Krysanova, V., A. Meiner, J. Roosaare, and A. Vasilyev. 1989. Simulation modelling of the coastal waters pollution from agricultural watershed. Ecological Modelling 49:7–29.CrossRefGoogle Scholar
  14. Loehle, C. 2000. Optimal control of spatially distributed process models. Ecological Modelling, 131:19–95.CrossRefGoogle Scholar
  15. Makowski, D., E.M.T. Hendrix, M.K. van Ittersum, and W.A.H. Rossing. 2000. A framework to study nearly optimal solutions of linear programming models developed for agricultural land use exploration. In Ecological Modelling, 131:65–77.CrossRefGoogle Scholar
  16. Martínez-Falero, E., I. Trueba, A. Cazorla, and J.L. Alier. 1998. Optimization of spatial allocation of agricultural activities. Journal of Agricultural Engineering Ressources, 69:1–13.CrossRefGoogle Scholar
  17. Maxwell, T. and R. Costanza. 1995. Distributed modular spatial ecosystem modelling. 5(3):247–262; special issue on advanced simulation methodologies.Google Scholar
  18. NADP. 2000. NRSP-3/National Trends Network. NADP Program Office, Illinois State Water Survey, Champaign, IL. Available from Available from Scholar
  19. Nevo, A., R. Oad, and T.H. Podmore. 1993. An integrated expert system for optimal crop planning. Agricultural Systems, 45:13–92.Google Scholar
  20. Randhir, T.O., J.G. Lee, and B. Engel. 2000. Multiple criteria dynamic spatial optimization to manage water quality on a watershed scale, Transaction of American Society of Agricultural Engineers, 43(2):291–299.Google Scholar
  21. Sasowsky, C.K. and T.W. Gardner. 1991. Watershed configuration and geographic information system parameterization for SPUR model hydrologic simulations. Water Resources Bulletin 27(1):7–18.Google Scholar
  22. Seppelt, R. 2000. Modelling regionalised optimum control problems for agroecosystem management. Ecological Modelling 131(2–3), 121–132.CrossRefGoogle Scholar
  23. Seppelt, R. and A. Voinov. 2002. Optimization methodology for land use patterns using spatially explicit landscape models. Ecological Modelling 151:125–142.CrossRefGoogle Scholar
  24. Sklar, F.H., R. Costanza, and J.W. Day, Jr. 1985. Dynamic spatial simulation modeling of coastal wetland habitat succession. Ecological Modelling 29:261–281.CrossRefGoogle Scholar
  25. USGS. 1995. Maryland NWIS-W Data Retrieval. Available from Scholar
  26. USGS. 1997. Maryland Surface-Water Data Retrieval. Available from Scholar
  27. Voinov, A., H.V. Voinov, R. Boumans, and R. Costanza. 1999. Environmental modeling of Calvert county buildout scenarios using hunting creek as a case study. Report to Calvert County Board of Commissioners, Ref. No. [UMCES] CBL 98-166.Google Scholar
  28. Wall, M. 1996. GALib: A C++ Library of Generic Algorithm Components, Version 2.4. MIT: Mechanical Engineering Dept. URL: Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 2004

Authors and Affiliations

  • Ralf Seppelt
  • Alexey Voinov

There are no affiliations available

Personalised recommendations