Skip to main content

How Does Nature Build a Tissue?

  • Chapter
Functional Tissue Engineering

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bard, J. 1990. Morphogenesis. Developmental and Cell Biology Series, Vol. 23, Cambridge University Press, Cambridge.

    Google Scholar 

  • Belintsev, B.N., Beloussov, L.V., Zaraisky, A.G. 1987. Model of pattern formation in epithelial morphogenesis, J. Theor. Biol. 129:369–394.

    CAS  PubMed  Google Scholar 

  • Beloussov, L.V. 1997. Mechanical stresses in animal development: Patterns and morphogenetical role. In: Dynamics of Cell and Tissue Motion. Alt, W., Deutsch, A., Dunn, G., eds. Birkhauser, Boston, 221–228.

    Google Scholar 

  • Beloussov, L.V. 1998. The Dynamic Architecture of the Development of Organisms. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Bouligand, Y. 1972. Twisted fibrous arrangements in biological materials and cholesteric mesophases, Tissue Cell 4:189–217.

    CAS  PubMed  Google Scholar 

  • Bouligand, Y., Denefle, J.-P., Lechaire, J.-P. Maillard, M. 1985. Twisted architectures in cell-free assembled collagen gels: Study of collagen substrates used for cultures, Biol. Cell 54:143–162.

    CAS  PubMed  Google Scholar 

  • Coen, E. 1999. The Art of Genes: How Organisms Make Themselves. Oxford University Press, Oxford.

    Google Scholar 

  • Cosgrove, D.J. 2000. Loosening of plant cell walls by expansins. Nature 407:321–362.

    Article  CAS  PubMed  Google Scholar 

  • Cowin, S.C. 1998. On mechanosensation in bone under microgravity. Bone 22:119S–125S.

    Article  CAS  PubMed  Google Scholar 

  • Cowin, S.C. 2000. How is a tissue built? J. Biomech. Eng. 122:1–17.

    Article  Google Scholar 

  • Dumais, J., Steele, C.R. 2000. New evidence for the role of mechanical forces in the shoot apical meristem. J. Plant Growth Regul. 19:7–18.

    Article  CAS  PubMed  Google Scholar 

  • Giraud-Guille, M.M. 1992. Liquid crystallinity in condensed type I collagen solutions: A clue to the packing of collagen in extracellular matrices, J. Mol. Biol. 224:861–873.

    CAS  PubMed  Google Scholar 

  • Giraud-Guille, M.M. 1996. Twisted liquid crystalline supramolecular arrangements in morphogenesis. Int. Rev. Cytology 166:59–101.

    CAS  Google Scholar 

  • Green, P.B. 1999. Expression of pattern in plants: Combining molecular and calculus-based biophysical paradigms. Am. J. Botany 86:1059–1076.

    Google Scholar 

  • Green, P.B., Steele, C.R., Rennich, S.C. 1996. Phyllotactic patterns: A biophysical mechanism for their origin. Ann. Botany 77:515–527.

    Google Scholar 

  • Haeckel, E. 1917. Kristallseelen—Studien fiber das anorganische Leben. Alfred Kroner Verlag, Leibzig.

    Google Scholar 

  • Halken, H. 1978. Synergetics. Springer-Verlag, New York.

    Google Scholar 

  • Harris, A.K. 1984. Cell traction and the generation of anatomical structure. Lecture Notes in Biomathematics 55:104–22.

    Google Scholar 

  • Harris, A.K. 1994. Multicellular mechanics in the creation of anatomical structures. In: Biomechanics of Active Movement and Division of Cells. N. Akkas, ed. Springer-Verlag, New York pp. 87–129.

    Google Scholar 

  • Harris, A.K., Wild, P., Stopak, D. 1980. Silicone rubber substrata: A new wrinkle in the study of cell locomotion. Science 208:177–179.

    CAS  PubMed  Google Scholar 

  • Harris, A.K., Stopak, D., Wild, P. 1981. Fibroblast traction as a mechanism for collagen morphogenesis. Nature 290:249–251.

    Article  CAS  PubMed  Google Scholar 

  • Harris, A.K., Stopak, D., and Warner, P. 1984. Generation of spatially periodic patterns by mechanical instability: a mechanical alternative to the Turing model. J. Embryol. Exp. Morph. 80:1–20.

    CAS  PubMed  Google Scholar 

  • Harrison, L.G. 1993. Kinetic Theory of Living Patterns. Developmental and Cell Biology Series, Vol. 28, Cambridge University Press, Cambridge.

    Google Scholar 

  • Hejnowicz, Z., Sievers, A. 1997. Tissue stresses in plant organs: Their origin and importance for movements. In: Dynamics of Cell and Tissue Motion. Alt, W., Deutsch, A., Dunn, G., eds. Birkhauser, Boston, pp. 235–242.

    Google Scholar 

  • Held, L.I. Jr. 1992. Models for Embryonic Periodicity. Monographs in Developmental Biology, Vol. 24. Karger.

    Google Scholar 

  • Jarvis, M.C. 1992. Self-assembly of plant cell walls. Plant, Cell and Environment 15:1–5.

    Google Scholar 

  • Mackay, A.L. 1999. Crystal souls (a translation of Haeckel (1917)), FORMA 14:1–146.

    Google Scholar 

  • Manoussaki, D., Lubkin, S.R., Vernon, R.B., Murray, J.D. 1996. A mechanical model for the formation of vascular networks in vitro. Acta Biotheor 44:271–282.

    CAS  PubMed  Google Scholar 

  • McQueen-Mason, S., Cosgrove, D.J. 1994. Disruption of hydrogen bonding between wall polymers by proteins that induce plant wall extension. Proc. Natl. Acad. Sci. USA 91:6574–6578.

    CAS  PubMed  Google Scholar 

  • Melikhov, A.V., Regirer, S.A., Stein or Shtein, A.A. 1983. Mechanical stresses as a factor in morphogenesis. Sov. Phys. Dokl. 28:636–638.

    Google Scholar 

  • Murray, J.D. 1993. Mathematical Biology. Springer-Verlag, New York.

    Google Scholar 

  • Murray, J.D., Oster, G.F., Harris, A.K. 1983. A mechanical model for mesenchymal morphogenesis. J. Math. Biol. 17:125–129.

    Article  CAS  PubMed  Google Scholar 

  • Neville, A.C. 1993. Biology of Fibrous Composites. Cambridge University Press, Cambridge.

    Google Scholar 

  • Odell, G.M., Oster, G.F., Alberch, P., Burnside, B. 1981. The mechanical basis of morphogenesis. I. Epithelial folding and invagination. Dev. Biol. 85:446–462.

    Article  CAS  PubMed  Google Scholar 

  • Oster, G.F., Murray, J.D., Harris, A.K. 1983. Mechanical aspects of mesenchymal morphogenesis. J. Embryol. Exp. Morphol. 78:83–125.

    CAS  PubMed  Google Scholar 

  • Peskin, C.S., Odell, G.M., Oster, G.F. 1993. Cellular motions and thermal fluctuations: The Brownian ratchet. Biophysical J. 65:316–324.

    CAS  Google Scholar 

  • Rey, A.D. 1996. Phenomenological theory of textured mesophase polymers in weak flows. Macromol. Theory Simul. 5:863–876.

    Article  CAS  Google Scholar 

  • Ridley, M. 1999. Genome. Harper Collins, New York.

    Google Scholar 

  • Schmidt-Nielsen, K. 1983. Animal Physiology: Adaptation and Environment, 3rd Ed., Cambridge University Press, Cambridge pp. 162–163.

    Google Scholar 

  • Stein, A.A. 1994. Self-organization in biological systems as a result of interaction between active and passive mechanical stresses: Mathematical model. In: Biomechanics of Active Movement and Division of Cells. N. Akkas, ed. NATO ASI Series, Vol. H 84, Springer-Verlag, New York, pp. 459–464.

    Google Scholar 

  • Stein or Shtein, A.A., Logvenkov, S.A. 1993. Spatial self-organization of a layer of biological material growing on a substrate. Phys. Dokl. 38:75–78.

    Google Scholar 

  • Stein, A.A., Rutz, M., Zieschang H. 1997. Mechanical forces and signal transduction in growth and bending of plant roots. In: Dynamics of Cell and Tissue Motion. Alt W., Deutsch A., Dunn G., eds. Birkhauser, Boston pp. 255–265.

    Google Scholar 

  • Taber, L. 1995. Biomechanics of growth, remodeling and morphogenesis. Appl. Mech. Rev. 48:487–545.

    Google Scholar 

  • Taber, L. 1998. Mechanical aspects of cardiac development. Prog. Biophys. Mol. Biol. 69:237–255.

    CAS  PubMed  Google Scholar 

  • Taber, L. 2000. Pattern formation in a non-linear membrane model for epithelial morphogenesis. Acta Biotheor. 48:47–63.

    Article  Google Scholar 

  • Trelstad, R.L. 1984. The Role of Extracellular Matrix in Development. Alan R. Liss, New York.

    Google Scholar 

  • Trelstad, R.L., Hayashi, K. 1979. Tendon fibrillogenesis: Intracellular collagen subassemblies and cell surface charges associated with fibril growth. Dev. Biol. 7:228–242.

    Google Scholar 

  • Trelstad, R.L., Silver, F.H. 1981. Matrix assembly. In: Cell Biology of the Extracellular Matrix. E.D. Hay, ed. Plenum Press, New York, pp. 179–216.

    Google Scholar 

  • Turing, A.M. 1952. The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 237:37–72.

    Google Scholar 

  • Wainwright, S.A., Biggs, W.D., Currey, J.D., Gosline, J.M. 1976. Mechanical Design in Organisms. Edward Arnold.

    Google Scholar 

  • Woodhead-Galloway, J. 1980. Collagen: The Anatomy of a Protein. Studies in Biology No. 117. Arnold, London.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Cowin, S.C. (2003). How Does Nature Build a Tissue?. In: Guilak, F., Butler, D.L., Goldstein, S.A., Mooney, D.J. (eds) Functional Tissue Engineering. Springer, New York, NY. https://doi.org/10.1007/0-387-21547-6_1

Download citation

  • DOI: https://doi.org/10.1007/0-387-21547-6_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95553-7

  • Online ISBN: 978-0-387-21547-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics