Skip to main content

Crosstalk Effects in Digital Circuits

  • Chapter
Interconnection Noise in VLSI Circuits
  • 222 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Roca M., Moll F., and Rubio A. “Electric Design Rules for Avoiding Crosstalk in Microelectronic Circuits”. In 4th International Workshop on Power an Timing Modelling for Performance of ICs, 1994.

    Google Scholar 

  2. Moll F. and Rubio A. “Spurious Signals in Digital CMOS VLSI Circuits: A propagation Analysis”. IEEE Trans. on Circuits and Systems_II, 39(10), 1992.

    Google Scholar 

  3. Shoji M. CMOS digital circuit technology. Prentice-Hall International, 1988.

    Google Scholar 

  4. Sah T. “Characteristics of the Metal-Oxide-Semiconductor Transistor”. IEEE Trans. on Electron Devices, 11(7), July 1964.

    Google Scholar 

  5. Moll F. Parasitic effects due to interconnections in microelectronic design. PhD thesis, Universitat Politecnica de Catalunya, March 1995.

    Google Scholar 

  6. Cartrysse J. “Measured Distortion of the Output-waveform of an Integrated Opamp Due to Substrate Noise”. IEEE Trans. on Electromagnetic Compatibility, 37(2), May 1995.

    Google Scholar 

  7. Cartrysse J., Sinnaeve A., and Vandecastele G. “Measured Crosstalk on Chips Using Specially Designed Components”. IEEE Trans. on Electromagnetic Compatibility, 37(2), May 1995.

    Google Scholar 

  8. Soumyanath K., Borkar S., Zhou C., and Bloechel B. “Accurate On-Chip Interconnect Evaluation: A Time-Domain Technique”. IEEE Journal of Solid State Circuits, 34(5), May 1999.

    Google Scholar 

  9. Caignet F., Delmas S., and Sicard E. “On the Measurement of Crosstalk in Integrated Circuits”. IEEE Trans. on VLSI Systems, 8(5), October 2000.

    Google Scholar 

  10. Caignet F., Delmas-Bendhia S., and Sicard E. “The challenge of signal integrity in deepsubmicrometer CMOS technology”. Proceedings of the IEEE, 89(4), April 2001.

    Google Scholar 

  11. Delmas S., Caignet F., Sicard E., and Roca M. “On-chip sampling in CMOS Integrated Circuits”. IEEE Trans. on Electromagnetic Compatibility, 41(4), November 1999.

    Google Scholar 

  12. T. Sato, Sylvester D., Cao Y., and Hu C. “Accurate in situ measurement of peak noise and delay change induced by interconnect coupling”. IEEE Journal of Solid State Circuits, 36(10), October 2001.

    Google Scholar 

  13. Fourniols J., Roca M., Caignet F., and Sicard E. “Characterization of Crosstalk Noise in Submicron CMOS Integrated Circuits: An Experimental View”. IEEE Trans. on Electromagnetic Compatibility, 40(3), August 1998.

    Google Scholar 

  14. Werner C., and Ramacher U. “Crosstalk Noise in Future Digital CMOS Circuits”. In DATE 2001, 2001.

    Google Scholar 

  15. Chandrakasan A. P. and Brodersen R. W. Low Power Digital CMOS Design. Kluwer Academic Publishers, 1995.

    Google Scholar 

  16. Sotiriadis P.P. and Chandrasakan A. “Bus Energy Minimization by Transition Pattern Coding (TPC) in Deep Submicron Technologies”. In International Conference on Computer Aided Design, November 2000.

    Google Scholar 

  17. Kim K.-W., Jung S.-O., Narayanan U., Liu C. L., and Kang S.-M. “Noise-Aware Power Optimization for On-Chip Interconnect”. In Proc. ISLPED’ 00, 2000.

    Google Scholar 

  18. Moll F., Roca M., and Isern E. “Analysis of dissipation energy of switching digital CMOS gates with coupled outputs”. Microelectronics Journal, 34(9):833_842, September 2003.

    Article  Google Scholar 

  19. Avant! Corp. Star-Hspice 2001.2, June 2001.

    Google Scholar 

  20. Kim K-W., Baek K.-H., Shanbhag N., Liu C.L., and Kang S.-M. “Coupling-driven signal encoding scheme for low-power interface design”. In International Conference on Computer Aided Design (ICCAD), 2000.

    Google Scholar 

  21. Machiarulo L., Macii E., and Poncino M. “Low energy encoding for deep submicron address buses”. In International Symposium on Low Power Electronic Design (ISLPED), 2001.

    Google Scholar 

  22. Sotiriadis P.P., Wang A., and Chandrakasan A. “Transition pattern coding: an approach to reduce energy in interconnect”. In European Solid State Circuits Conference, 2000.

    Google Scholar 

  23. Goncalves N. and de Man H. J. “NORA: A racefree dynamic CMOS technique for pipelined logic structures”. IEEE Journal of Solid State Circuits, 22(3), June 1983.

    Google Scholar 

  24. Bernstein K., Carrig K.M., Durham C.M., Hansen P.R., Hogenmiller D., Nowak E.J., and Rohrer N.J. High speed CMOS design styles. Kluwer Academic Publishers, 1999.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

(2004). Crosstalk Effects in Digital Circuits. In: Interconnection Noise in VLSI Circuits. Springer, Boston, MA. https://doi.org/10.1007/0-306-48719-5_3

Download citation

  • DOI: https://doi.org/10.1007/0-306-48719-5_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7733-3

  • Online ISBN: 978-0-306-48719-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics