Skip to main content

Novel (Bio)chemical and (Photo)physical Probes for Imaging Living Cells

  • Conference paper
Supramolecular Structure and Function 8

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yarden, Y., and Slikowski, M.X., 2001, Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol. 2: 127–137.

    Article  PubMed  CAS  Google Scholar 

  2. Clynes, R.A., Towers, T.L., Presta, L.G., and Ravetch, J.V., 2000, Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nature Med. 6: 443–446.

    PubMed  CAS  Google Scholar 

  3. Prasher, D.C., Eckenrode, V.K., Ward, W.W., Prendergast, F.G., and Cormier, M.J., 1992, Primary structure of the Aequorea-victoria green fluorescent protein. Gene 111: 229–233.

    Article  PubMed  CAS  Google Scholar 

  4. Zhang, J., Campbell, R.E., Ting, A.Y., and Tsien, R.Y., 2002, Creating new fluorescent probes for cell biology. Nat. Rev. Mol. Cell Biol. 3: 906–918.

    Article  PubMed  CAS  Google Scholar 

  5. Lippincott-Schwartz, J., and Patterson, G.H., 2003, Development and use of fluorescent protein markers in living cells. Science 300: 87–91.

    Article  PubMed  CAS  Google Scholar 

  6. Miyawaki, A., 2003, Visualization of the spatial and temporal dynamics of intracellular signaling. Dev. Cell 4: 295–305.

    Article  PubMed  CAS  Google Scholar 

  7. Sato, M., Ozawa, T., Inukai, K., Asano, T., and Umezawa, Y., 2002, Fluorescent indicators for imaging protein phosphorylation in single living cells. Nat. Biotechnol. 20: 287–294.

    Article  PubMed  CAS  Google Scholar 

  8. Zacharias, D.A., Violin, J.D., Newton, A.C., and Tsien, R.Y., 2002, Partitioning of lipidmodified monomeric GFPs into membrane microdomains of live cells. Science 296: 913–916.

    Article  PubMed  CAS  Google Scholar 

  9. Zeytun, A., Jeromin, Scalettar, B.A., Waldo, G.S., and Bradbury, A.R.M., 2003, Fluorobodies combine GFP fluorescence with the binding characteristics of antibodies. Nat. Biotechnol. 21: 1473–1479.

    Article  PubMed  CAS  Google Scholar 

  10. Kurokawa, K., Mochizuki, N., Ohba, Y., Mizuno, H., Miyawaki, A., and Matsuda, M., 2001, A pair of fluorescent resonance energy transfer-based probes for tyrosine phosphorylation of the CrkII adaptor protein in vivo. J. Biol. Chem. 276:31305–31310.

    Article  PubMed  CAS  Google Scholar 

  11. Wiedenmann, J., Schenk, A., Röcker, C., Girod, A., Spindler, K.-D., and Nienhaus, G.U., 2002, A far-red fluorescent protein with fast maturation and reduced oligomerization tendency from Entacmea quadricolor (Anthoza, Actinaria). Proc. Nat. Acad. Sci. U.S.A. 99: 11646–11651.

    CAS  Google Scholar 

  12. Patterson, G.H., and Lippincott-Schwartz, J., 2002, A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297:1873–1877.

    Article  PubMed  CAS  Google Scholar 

  13. Haker, A., Hendriks, J., van Stokkum, I.H.M., Heberle, J., Hellingwerf, K.J., Crielaard, W., and Genach, T., 2003, Two photocycles of photoactive yellow protein from Rhodobacter sphaeroides. J. Biol. Chem. 278: 8442–8451.

    Article  PubMed  CAS  Google Scholar 

  14. Nagai, T., Ibata, K., Park, E.S., Kubota, M., Mikoshiba, K., and Miyawaki, A., 2002, A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat. Biotechnol. 20: 87–90.

    Article  PubMed  CAS  Google Scholar 

  15. Griesbeck, O., Baird, G.S., Campbell, R.E., Zacharias, D.A., and Tsien, R.Y., 2001, Reducing the environmental sensitivity of yellow fluorescent protein. J. Biol. Chem. 276: 29188–29194.

    Article  PubMed  CAS  Google Scholar 

  16. Campbell, R.E., Tour, O., Palmer, A.E., Steinbach, P.A., Baird, G.S., Zacharias, D.A., and Tsien, R.Y., 2002, A monomeric red fluorescent protein. Proc. Nat. Acad. Sci. U.S.A. 99: 7877–7882.

    CAS  Google Scholar 

  17. Miyawaki, A., Llopis, J., Heim, R., McCaffery, J.M., Adams, J.A., Ikura, M., and Tsien, R.Y., 1997, Fluorescent indicators for Ca 2+ based on green fluorescent proteins and calmodulin. Nature 388: 882–887.

    PubMed  CAS  Google Scholar 

  18. Jares-Erijman, E.A., and Jovin, T.M., 2003, FRET imaging. Nat. Biotechnol. 21: 1387–1395.

    Article  PubMed  CAS  Google Scholar 

  19. Clegg, R.M., 1995, Fluorescence resonance energy transfer. Curr. Opin. Biotechn. 6: 103–110.

    CAS  Google Scholar 

  20. Clegg, R.M., Gadella Jr., T.W.J., and Jovin, T.M., 1994, Lifetime-resolved fluorescence imaging. Proc. SPIE 2137: 105–118.

    Google Scholar 

  21. Patterson, G.H., Piston, D.W., and Barisas, B.G., 2000, Forster distances between green fluorescent protein pairs. Anal. Biochem. 284: 438–440.

    Article  PubMed  CAS  Google Scholar 

  22. Hu, C.D., and Kerppola, T.K., 2003, Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nat. Biotechnol. 21: 539–545.

    Article  PubMed  CAS  Google Scholar 

  23. Ozawa, T., and Umezawa, Y., 2002, Peptide assemblies in living cells. Methods for detecting protein-protein interactions. Supramol. Chem. 14: 271–280.

    Article  CAS  Google Scholar 

  24. Marriott, G., and Parker, I., eds., 2003, Methods Enzymol. Biophotonics, Part B. 361, Academic Press, San Diego, CA.

    Google Scholar 

  25. Riven, I., Kalmanzon, E., Segev, L., and Reuveny, E., 2003, Conformational rearrangements associated with the gating of the G protein-coupled potassium channel revealed. Neuron 38: 225–235.

    Article  PubMed  CAS  Google Scholar 

  26. Griffin, B.A., Adams, S.R., Jones, J., and Tsien, R.Y., 2000, Fluorescent labeling of recombinant proteins in living cells with FlAsH. Methods Enzymol. 327: 565–578.

    PubMed  CAS  Google Scholar 

  27. Gaietta, G., Deerinck, T.J., Adams, S.R., Bouwer, J., Tour, O., Laird, D.W., Sosinsky, G.E., Tsien, R.Y., and Ellisman, M.H., 2002, Multicolor and electron microscopic imaging of connexin trafficking. Science 296: 503–507.

    Article  PubMed  CAS  Google Scholar 

  28. Falk, M.M., 2002, Genetic tags for labelling live cells: gap junctions and beyond. Trends Cell Biol. 12: 399–404.

    Article  PubMed  CAS  Google Scholar 

  29. Stroffekova, K., Proenza, C., and Beam, K.G., 2001, The protein-labelling reagent FlAsHEDT 2 binds not only to CCXXCC motifs but also non-specifically to endogenous cysteine-rich proteins. Eur. J. Physiol. 442: 859–866.

    Article  CAS  Google Scholar 

  30. Giordano, L., Jovin, T.M., Irie, M., and Jares-Erijman, E.A., 2002, Diheteroarylethenes as thermally stable photoswitchable acceptors in photochromic fluorescence resonance energy transfer (pcFRET). J. Am. Chem. Soc. 124: 7481–7489.

    Article  PubMed  CAS  Google Scholar 

  31. Song, L., Jares-Erijman, E.A., and Jovin, T.M., 2002, A photochromic acceptor as a reversible light-driven switch in fluorescence resonance energy transfer (FRET). J. Photochem. Photobiol. A 150: 177–185.

    CAS  Google Scholar 

  32. Clayton, A.H.A., Hanley, Q.S., Arndt-Jovin, D.J., Subramaniam, V., and Jovin, T.M., 2002, Dynamic fluorescence anisotropy imaging microscopy in the frequency domain (rFLIM). Biophys. J. 83: 1631–1649.

    PubMed  CAS  Google Scholar 

  33. Lidke, D.S., Nagy, P., Barisas, B.G., Heintzmann, R., Post, J.N., Lidke, K.A., Clayton, A.H.A., Arndt-Jovin, D.J., and Jovin, T.M., 2003, Imaging molecular interactions in cells by dynamic and static fluorescence anisotropy (rFLIM and emFRET). Biochem. Soc. Trans. 31: 1020–1027.

    Article  PubMed  CAS  Google Scholar 

  34. Schlessinger, J., 2002, Ligand-induced, receptor-mediated dimerization and activation of EGF receptor. Cell 110:669–672.

    Article  PubMed  CAS  Google Scholar 

  35. Gadella Jr., T.W.J., and Jovin, T.M., 1995, Oligomerization of epidermal growth factor receptors on A431 cells studied by time-resolved fluorescence imaging microscopy: A stereochemical model for tyrosine kinase receptor activation. J. Cell Biol. 129: 1543–1558.

    Article  PubMed  CAS  Google Scholar 

  36. Wu, X., Liu, H., Liu, J., Haley, K.N., Treadway, J.A., Larson, J.P., Ge, N., Peale, F., and Bruchez, M.P., 2003, Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat, Biotechnol. 21: 41–46.

    CAS  Google Scholar 

  37. Jaiswal, J.K., Mattoussi, H., Mauro, J.M., and Simon, S.M., 2003, Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol. 21: 47–51.

    Article  PubMed  CAS  Google Scholar 

  38. Larson, D.R., Zipfel, W.R., Williams, R.M., Clark, S.W., Bruchez, M.P., Wise, F.W., and Webb, W.W., 2003, Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300: 1434–1436.

    PubMed  CAS  Google Scholar 

  39. Lidke, D.S., Nagy, P., Heintzmann, R., Arndt-Jovin, D.J., Post, J.N., Grecco, H., Jares-Erijman, E.A., and Jovin, T.M., 2004, Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nat. Biotechnol., in press (DOI: 10.1038/Nbt1929).

    Google Scholar 

  40. Medintz, I.L., Trammell, S.A., Mattoussi, H., and Mauro, J.M., 2004, Reversible modulation of quantum dot photoluminescence using a protein-bound photochromic fluorescence resonance energy transfer acceptor. J. Am. Chem. Soc. 126: 30–31.

    PubMed  CAS  Google Scholar 

  41. Clapp, A.R., Medintz, I.L., Mauro, J.M., Fisher, B.R., Bawendi, M.G., and Mattoussi, H., 2004, Fluorescence Resonance Energy Transfer between Quantum Dot donors and dye-labeled protein acceptors. J. Am. Chem. Soc. 126:301–310.

    PubMed  CAS  Google Scholar 

  42. Brock, R., and Jovin, T., 2003, Quantitative image analysis of cellular protein translocation induced by magnetic microspheres: application to the EGF receptor. Cytometry A 52A: 1–11.

    Article  CAS  Google Scholar 

  43. Brock, R., and Jovin, T.M., 2001, Heterogeneity of signal transduction at the subcellular level: microsphere-based focal EGF receptor activation and stimulation of Shc translocation. J. Cell Sci. 114:2437–2447.

    PubMed  CAS  Google Scholar 

  44. Verveer, P.J., Wouters, F.S., Reynolds, A.R., and Bastiaens, P.I.H., 2000, Quantitative imaging of lateral ErbB1 receptor signal propagation in the plasma membrane. Science 290: 1567–1570.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this paper

Cite this paper

Jares-Erijman, E.A. et al. (2005). Novel (Bio)chemical and (Photo)physical Probes for Imaging Living Cells. In: Pifat-Mrzljak, G. (eds) Supramolecular Structure and Function 8. Springer, Boston, MA. https://doi.org/10.1007/0-306-48662-8_6

Download citation

  • DOI: https://doi.org/10.1007/0-306-48662-8_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-48661-6

  • Online ISBN: 978-0-306-48662-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics