Skip to main content

Expression of Non-Organelle Glutamate Transporters to Support Peripheral Tissue Function

  • Chapter
Glutamate Receptors in Peripheral Tissue: Excitatory Transmission Outside the CNS

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arriza, J.L., M.P. Kavanaugh, W.A. Fairman, Y.N. Wu, G.H. Murdoch, R.A. North et al. (1993). Cloning and expression of a human neutral amino acid transporter with structural similarity to the glutamate transporter gene family. J. Biol. Chem. 268, 15329–15332.

    PubMed  CAS  Google Scholar 

  • Arriza, J.L., S. Eliasof, M.P. Kavanaugh, and S.C. Amara (1997). Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc. Natl. Acad. Sci. USA 94, 4155–4160.

    PubMed  CAS  Google Scholar 

  • Avissar, N.E., C.K. Ryan, V. Ganapathy, and H. Sax (2001). Na+-dependent neutral amino acid transporter ATB0 is a rabbit epithelial cell brush-border protein. Am. J. Physiol. Cell Physiol. 281, C963–C971.

    PubMed  CAS  Google Scholar 

  • Ballatori, N., R. Jacob, and J.L. Boyer (1986a). Intrabiliary glutathione hydrolysis. A source of glutamate in bile. J. Biol. Chem. 261, 7860–7865.

    PubMed  CAS  Google Scholar 

  • Ballatori, N., R.H. Moseley, and J.L. Boyer (1986b). Sodium gradient-dependent L-glutamate transport is localized to the canalicular domain of liver plasma membranes. Studies in rat liver sinusoidal and canalicular membrane vesicles. J. Biol. Chem. 261, 6216–6221.

    PubMed  CAS  Google Scholar 

  • Bannai, S. and E. Kitamura (1980). Transport interaction of L-cystine and L-glutamate in human diploid fibroblasts in culture. J. Biol. Chem. 255, 2372–2376.

    PubMed  CAS  Google Scholar 

  • Bannai, S. and E. Kitamura (1981). Role of proton dissociation in the transport of cystine and glutamate in human diploid fibroblasts in culture. J. Biol. Chem. 256, 5770–5772.

    PubMed  CAS  Google Scholar 

  • Bassi, M.T., E. Gasol, M. Manzoni, M. Pineda, M. Riboni, R. Martin et al. (2001). Identification and characterization of human xCT that co-expresses, with 4F2 heavy chain, the amino acid transport activity system xC −. Pflugers Arch. 442, 286–296.

    PubMed  CAS  Google Scholar 

  • Battaglia, F.C. (2000). Glutamine and glutamate exchange between the fetal liver and the placenta. J. Nutr. 130, 974S–977S.

    PubMed  CAS  Google Scholar 

  • Battaglia, F.C. and T.R.H. Renault (2001). Placental transport and metabolism of amino acids. Placenta 22, 145–161.

    PubMed  CAS  Google Scholar 

  • Begum, L., M.A. Jalil, K. Kobayashi, M. Iijima, M.X. Li, T. Yasuda et al. (2002). Expression of three mitochondrial solute carriers, citrin, aralarl and ornithine transporter, in relation to urea cycle in mice. Biochim. Biophys. Acta 1574, 283–292.

    PubMed  CAS  Google Scholar 

  • Biolo, G., X.-J. Zhang, and R.R. Wolfe (1995). Role of membrane interorgan amino acid flow between muscle and small intestine. Metabolism 44, 719–724.

    PubMed  CAS  Google Scholar 

  • Bode, B. (2001). Recent molecular advances in mammalian glutamine transport. J. Nutr. 131, 2475S–2485S.

    PubMed  CAS  Google Scholar 

  • Bridges, C.C., R. Kekuda, H. Wang, P.D. Prasad, P. Mehta, W. Huang et al. (2001). Structure, function, and regulation of human cystine/glutamate transporter in retinal pigment epithelial cells. Invest. Opthalmol. Vis. Sci. 42, 47–54.

    CAS  Google Scholar 

  • Broeder, J.A., C.H. Smith, and A.J. Moe (1994). Glutamate oxidation by trophoblasts in vitro. Am. J. Physiol. 267, C189–C194.

    PubMed  CAS  Google Scholar 

  • Bronson, J.T. (2000). Glutamate, at the interface between amino acid and carbohydrate metabolism. J. Nutr. 130, 988S–990S.

    Google Scholar 

  • Burger, H.-J., R. Gebhardt, C. Mayer, and D. Meckel (1989). Different capacities for amino acid transport in periportal and perivenous hepatocytes isolated by digitonin/collagenase perfusion. Hepatology 9, 22–28.

    PubMed  CAS  Google Scholar 

  • Butchbach, M.E., L. Lai, and C.L. Lin (2002). Molecular cloning, gene structure, expression profile and functional characterization of the mouse glutamate transporter (EAAT3) interacting protein GTRAP3-18. Gene 292, 81–90.

    PubMed  CAS  Google Scholar 

  • Cariappa, R. and M.S. Kilberg (1992). Plasma membrane domain localization, and transcytosis of the glucagon-induced hepatic system A carrier. Am. J. Physiol. 263, E1021–E1028.

    PubMed  CAS  Google Scholar 

  • Chairoungdua, A., Y. Kanai, H. Matsuo, J. Inatomi, D.K. Kim, and H. Endou (2001). Identification and characterization of a novel member of the heterodimeric amino acid transporter family presumed to be associated with an unknown heavy chain. J. Biol. Chem. 276, 49390–49399.

    PubMed  CAS  Google Scholar 

  • Cheeseman, C.I. (1991). Molecular mechanisms involved in the regulation of amino acid transport. Prog. Biophysiol. Molec. Biol. 55, 71–84.

    CAS  Google Scholar 

  • Cooper, A.J., E. Nieves, K.C. Rosenspire, S. Filc-DeRicco, A.S. Gelbard, and S.W. Brasilia (1988). Short-term metabolic fate of 13N-labeled glutamate, alanine, and glutamine(amide) in rat liver. J. Biol. Chem. 263, 12268–12273.

    PubMed  CAS  Google Scholar 

  • Curthoys, N.P. and M. Watford (1995). Regulation of glutaminase activity and glutamine metabolism. Annu. Rev. Nutr. 15, 133–159.

    PubMed  CAS  Google Scholar 

  • Danbolt, N.C. (2001). Glutamate uptake. Prog. Neurobiol. 65, 1–105.

    PubMed  CAS  Google Scholar 

  • Dantzig, A.H., M.C. Finkelstein, E.A. Adelberg, and C.W. Slayman (1978). The uptake of L-glutamic acid in a mormal mouse lymphocyte line and in a transport mutant. J. Biol. Chem. 253, 5813–5819.

    PubMed  CAS  Google Scholar 

  • Davies, J. and S.R. Glasser (1968). Histological and fine structural observations on the placenta of the rat. Acta Anat. 69, 542–608.

    PubMed  CAS  Google Scholar 

  • del Arco, A., J. Morcillo, J.R. Martinez-Morales, C. Galian, V. Martos, P. Bovolenta et al. (2002). Expression of the aspartate/glutamate mitochondrial carriers aralar1 and citrin during development and in adult rat tissues. Eur. J. Biochem. 269, 3313–3320.

    PubMed  Google Scholar 

  • D’Errico, A., M. Fiorentino, Y. Daikuhara, H. Tsubouchi, C. Brechot, J.-Y. Scoaazec et al. (1996). Liver hepatocyte growth factor does not always correlate with hepatocellular proliferation in human liver legions; its specific receptor c-met does. Hepatology 24, 60–64.

    PubMed  CAS  Google Scholar 

  • Dierks-Ventling, C., A.L. Cone, and R.A. Wapnir (1971). Placental transfer of amino acids in the rat. 1. L-Glutamic acid and L-glutamine. Biol. Neonate 17, 361–372.

    PubMed  CAS  Google Scholar 

  • Droge, W., H-P. Eck, M. Betzler, P. Schlag, P. Drings, and W. Ebert (1988). Plasma glutamate concentration and lymphocyte activity. J. Cancer Clin. Oncol. 114, 124–128.

    CAS  Google Scholar 

  • Duan, S., C.M. Anderson, B.A. Stein, and R.A. Swanson (1999). Glutamate induces rapid upregulation of astrocyte glutamate transport and cell-surface expression of GLAST. J. Neurosci. 19, 10193–10200.

    PubMed  CAS  Google Scholar 

  • Eck, H.-P., C. Stahl-Hennig, G. Hunsmann, and W. Droge (1991). Metabolic disorder as an early consequence of simian immunodeficiency virus infection in rhesus macques. Lancet 338, 346–357.

    PubMed  CAS  Google Scholar 

  • Fairman, W.A., R.J. Vandenberg, J.L. Arriza, M.P. Kavanaugh, and S.G. Amara (1995). An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature 375, 599–603.

    PubMed  CAS  Google Scholar 

  • Fei, Y.-J., M. Sugawara, T. Nakanishi, W. Huang, H. Wang, P.D. Prasad et al. (2000). Primary structure, genomic organization, and functional and electrogenic characteristics of human system N1, a Na+-and H+-coupled glutamine transporter. J. Biol. Chem. 275, 23707–23717.

    PubMed  CAS  Google Scholar 

  • Folsch, U.R. and K.G. Wormsley (1977). The amino acid composition of rat bile. Experientia 33, 1055–1056.

    PubMed  CAS  Google Scholar 

  • Frank, C., A.M. Giammarioli, L. Falzano, S. Rufini, S. Ceruti, A. Camurri et al. (2000). 2-Chloro-adenosine induces a glutamate-dependent calcium response in C2C12 myotubes. Biochem. Biophys. Res. Comm. 227, 546–551.

    Google Scholar 

  • Frank, C., A.M. Giammarioli, L. Falzano, C. Fiorentini, and S. Rufini (2002). Glutamate-induced calcium increase in myotubes depends on up-regulation of a sodium-dependent transporter. FEBS Lett. 527, 269–273.

    PubMed  CAS  Google Scholar 

  • Frayn, K.N., K. Khan, S.W. Coppack, and M. Elia (1991). Amino acid metabolism in human subcutaneous adipose tissue in vivo. Clin. Sci. 80, 471–474.

    PubMed  CAS  Google Scholar 

  • Gaseously, G.C., V. Dall’Asta, O. Bussolati, M. Makowske, and H.N. Christensen (1981). A stereoselective anomaly in dicarboxylic amino acid transport. J. Biol. Chem. 256, 6054–6059.

    Google Scholar 

  • Gazzola, R.F., R. Sala, O. Bussolati, Visigalli, V. Dall’Asta, V. Ganapathy et al. (2001). The adaptive regulation of amino acid transporter system A is associated to changes in ATA2 expression. FEBS Lett. 490, 11–14.

    PubMed  CAS  Google Scholar 

  • Gebhardt, R. and D. Meckel (1983). Glutamate uptake by cultured rat hepatocytes is mediated by hormonally inducible, sodium-dependent transport systems. FEBS Lett. 161, 275–278.

    PubMed  CAS  Google Scholar 

  • Gegelashvili, G., M.B. Robinson, D. Trotti, and T. Rauen (2001). Regulation of glutamate transporters in health and disease. Prog. Brain Res. 132, 267–286.

    PubMed  CAS  Google Scholar 

  • Gissendanner, S.J., N.M.P. Etienne, and J.C. Matthews (2003a). Differential expression of EAAC1 and GLT-1 glutamate transporters by bovine epithelial tissues is not altered by physiological development. FASEB J. 17, A305.

    Google Scholar 

  • Gissendanner, S.J., N.M.P. Etienne, K.R. McLeod, and J.C. Matthews (2003b). The pattern of EAAC1 and GLT-1 glutamate transporter expression by skeletal muscle and adipose tissues of fattening cattle differs from that of glutamine synthetase. FASEB J. 17, A738.

    Google Scholar 

  • Gu, S., H.L. Roderick, P. Camacho, and J.X. Jiang, (2000). Identification and characterization of an amino acid transporter expressed differentially in liver. Proc. Natl. Acad. Sci. USA 97, 3230–3235.

    PubMed  CAS  Google Scholar 

  • Hack, V., O. Stutz, R. Kinscherf, M. Schykowski, M. Kellerer, E. Holm et al. (1996). Elevated venous glutamate levels in (pre)catabolic conditions result at least partly from a decreased glutamate transport activity. J. Mol. Med. 74, 337–343.

    PubMed  CAS  Google Scholar 

  • Hatanaka, T., W. Huang, H. Wang, M. Sugawara, P.D. Prasad, F.H. Leibach et al. (2000). Primary structure, functional characteristics and tissue expression pattern of a human ATA2, a new subtype of amino acid transport system A. Biochim. Biophys. Acta 1467, 1–6.

    PubMed  CAS  Google Scholar 

  • Haussinger, D. and W. Gerok (1983). Hepatocyte heterogeneity in glutamate uptake by isolated perfused rat liver. Eur. J. Biochem. 136, 421–425.

    PubMed  CAS  Google Scholar 

  • Haussinger, D., H. Sies, and W. Gerok (1985). Functional hepatocyte heterogeneity in ammonia metabolism. The intercellular glutamine cycle. J. Hepatol. 1, 3–14.

    PubMed  CAS  Google Scholar 

  • Haussinger, D., B. Stoll, T. Stehle, and W. Gerok (1989). Hepatocyte heterogeneity in glutamate transport in perfused rat liver. Eur. J. Biochem. 185, 189–195.

    PubMed  CAS  Google Scholar 

  • Haussinger, D. (1990). Liver glutamine metabolism. J. Parent. Enteral. Nut. 14, 56S–62S.

    CAS  Google Scholar 

  • Hay, W.W.J. (1995). Current topic: Metabolic interelationships of placenta and fetus. Placenta 16, 19–30.

    PubMed  Google Scholar 

  • Hediger M.A. and T.C. Welbourne (1999). Introduction: Glutamate transport, metabolism, and physiological responses. Am. J. Physiol. 277, F477–F480.

    PubMed  CAS  Google Scholar 

  • Heitmann, R.N. and E.N. Bergman. (1981). Glutamate interconversions and glucogenicity in the sheep. Am. J. Physiol. 241, 465–472.

    Google Scholar 

  • Hertz, L. (1979). Functional interactions between neurons and astrocytes. I. Turnover and metabolism of putative amino acid transmitters. Prog. Neurobiol. 13, 277–323.

    PubMed  CAS  Google Scholar 

  • Hoeltzli, S.D., L.K. Kelley, A.J. Moe, and C.H. Smith (1990). Anionic amino acid transport systems in isolated basal plasma membrane vesicles of human placenta. Am. J. Physiol. 259, C47–C55.

    PubMed  CAS  Google Scholar 

  • Holm, E., V. Hack, M. Tokus, R. Breitkreutz, A. Babylon, and W. Droge (1997). Linkage between postabsorptive amino acid release and glutamate uptake in skeletal muscle tissue of healthy young subjects, cancer patients, and the elderly. J. Mol. Med. 75, 454–461.

    PubMed  CAS  Google Scholar 

  • Horowitz, M.L. and W.E. Knox (1968). A phosphate activated glutaminase in rat liver different from that in kidney and other tissues. Enzymol. Biol. Clin. 9, 241–255.

    CAS  Google Scholar 

  • Howell, J.A., A.D. Matthews, K.C. Swanson, D.L. Harmon, and J.C. Matthews (2001). Molecular identification of high-affinity glutamate transporters in sheep and cattle forestomach, intestine, liver, kidney, and pancreas. J. Anim. Sci. 79, 1329–1336.

    PubMed  CAS  Google Scholar 

  • Howell, J.A., A.D. Matthews, T.C. Welbourne, and J.C. Matthews (2003). Content of ileal EAAC1 and hepatic GLT1 high-affinity glutamate transporters is increased in growing versus non-growing lambs, paralleling increased tissue concentrations of D-and L-glutamate and plasma glutamine and alanine. J. Anim. Sci. 81, 1030–1039.

    PubMed  CAS  Google Scholar 

  • Hundal, H.S., M.J. Rennie, and P.W. Watt (1989). Characteristics of acidic, basic and neutral amino acid transport in the perfused rat hindlimb. J. Physiol. (London) 408, 93–114.

    CAS  Google Scholar 

  • Hundal, H.S., A. Marette, Y. Mitsumoto, T. Ramlal, R. Blostein, and A. Klip (1992). Insulin induces translocation of the α2 and β1 subunits of the Na+/K+-ATPase from intracellular compartments to the plasma membrane in mammalian skeletal muscle. J. Biol. Chem. 267, 5040–5043.

    PubMed  CAS  Google Scholar 

  • Jabaudon, D., M. Scanziana, B.H. Gahwiler, and U. Gerber (2000). Acute decrease in net glutamate uptake during energy deprivation. PNAS 97, 5610–5615.

    PubMed  CAS  Google Scholar 

  • Jackson, M., W. Song, M.-Y. Yu, L. Jin, M. Dykes-Hoberg, C.G. Lin et al. (2001). Modulation of the neuronal glutamate transporter EAAT4 by two interacting proteins. Nature 410, 89–93.

    PubMed  CAS  Google Scholar 

  • Kanai, Y., and M.A. Hediger (1992). Primary structure and functional characterization of a high-affinity glutamate transporter. Nature 360, 467–471.

    PubMed  CAS  Google Scholar 

  • Katunuma, N., I. Tomino, and Y. Sanada (1968). Differentiation of organ specific glutaminase isozyme during development. Biochem. Biophys. Res. Commun. 32, 426–432.

    PubMed  CAS  Google Scholar 

  • Kekuda, R., P.D. Prasad, Y.-J. Fei, V. Torres-Zamorano, S. Sinha, T.L. Yang-Feng et al. (1996). Cloning of the sodium-dependent, broad-scope, neutral amino acid transporter B0 from a human placental choriocarcinoma cell line. J. Biol. Chem. 271, 18661–18675.

    Google Scholar 

  • Kekuda, R., V. Torres-Zamorano, Y.-J. Fei, P.D. Prasad, H.W. Li, D. Mader et al. (1997). Molecular and functional characterization of intestinal Na+-dependent neutral amino acid transporter B0. Am. J. Physiol. 272, G1463–G1472.

    PubMed  CAS  Google Scholar 

  • Kilberg, M.S., M.E. Handlogten, and H.N. Christensen (1980). Characteristics of an amino acid transport system in rat liver for glutamine, asparagine, histidine, and closely related analogs. J. Biol. Chem. 255, 4011–4019.

    PubMed  CAS  Google Scholar 

  • Kilberg, M.S. and D. Haussinger (1992). Amino acid transport in liver. In M.S. Kilberg and D. Haussinger (eds), Mammalian Amino Acid Transport: Mechanisms and Control. Academic Press, San Diego, CA, pp. 133–148.

    Google Scholar 

  • King, N., H. Williams, J.D. McGivan, and M.S. Suleiman (2001). Characteristics of L-aspartate transport and expression of EAAC-1 in sarcolemma vesicles and isolated cells from rat heart. Cardiovasc. Res. 52, 84–94.

    PubMed  CAS  Google Scholar 

  • Kowalski, T.J. and M. Watford (1994). Production of glutamine and utilization of glutamate by rat subcutaneous adipose tissue in vivo. Am. J. Physiol. 266, E151–E154.

    PubMed  CAS  Google Scholar 

  • Kowalski, T.J., G. Wu, and M. Watford (1997). Rat adipose tissue amino acid metabolism in vivo as assessed by microdialysis and arteriovenous techniques. Am. J. Physiol. 272, E613–E622.

    Google Scholar 

  • Lange, K.H., J. Loresten, F. Isaksson, L. Simonsen, J. Bulow, and M. Kaer (2002). Lipolysis in human adipose tissue during exercise: comaparison of microdialysis and a–v measurements. J. Appl. Physiol. 92, 1310–1316.

    PubMed  CAS  Google Scholar 

  • Levy, L.M., O. Warr, and D. Attwell (1998). Stoichiometry of the glial glutamate transporter GLT-1 expressed inducibly in a chinese hamster ovary cell line selected for low endogenous Na+-dependent glutamate uptake. J. Neurosci. 18, 962–9628.

    Google Scholar 

  • Liao, K. and D. Lane (1995). Expression of a novel insulin-activated amino acid transporter gene during differentiation of 3t3-L1 preadipocytes into adipocytes. Biochem. Biophys. Res. Comm. 208, 1008–1015.

    PubMed  CAS  Google Scholar 

  • Lin, C.I., I. Orlov, A.M. Ruggiero, M. Dykes-Hoberg, A. Lee, M. Jackson et al. (2001). Modulation of the neuronal glutamate transporter EAAC1 by the interacting protein GTRAP3-18. Nature 410, 84–88.

    PubMed  CAS  Google Scholar 

  • Linder-Horowitz, M. (1969). Changes in glutaminase activities of rat liver and kidney during pre-and post-natal development. Biochem. J. 114, 65–70.

    PubMed  CAS  Google Scholar 

  • Lindros, K.O., K.E. Penttila, J.J.W. Gaasbeek, A.F. Moorman, H. Speisky, and Y. Isreal (1989). The gamma-glutamyltransferase/glutamine synthetase activity ratio. A powerful marker for the acinar origin of hepatocytes. J. Hepatol. 8, 338–343.

    PubMed  CAS  Google Scholar 

  • Low, S.Y., P.M. Taylor, H.S. Hundal, C.I. Pogson, and M.J. Rennie (1992). Transport of L-glutamine and L-glutamate across sinusoidal membranes of rat liver. Effects of starvation, diabetes and corticosteroid treatment. Biochem. J. 284, 333–340.

    PubMed  CAS  Google Scholar 

  • Low, S.Y., M.J. Rennie, and P.M. Taylor (1994). Sodium-dependent glutamate transport in cultured rat myotubes increases after glutamine deprivation. FASEB J. 8, 127–131.

    PubMed  CAS  Google Scholar 

  • Lynch, A.M. and J.D. McGivan (1987). Evidence for a single common Na+-dependent transport system for alanine, glutamine, leucine and phenylalanine in brush-border membrane vesicles from bovine kidney. Biochim. Biophys. Acta 899, 176–184.

    PubMed  CAS  Google Scholar 

  • Maechler, P. and C. Wolheim (1999). Mitochondrial glutamate acts as a messenger in glucose-induced insulin exocytosis. Nature 402, 685–689.

    PubMed  CAS  Google Scholar 

  • Malakooti, J., R.Y. Dahdal, L. Schmidt, T.J. Layden, P.K. Dudeja, and K. Ramaswamy (1999). Molecular cloning, tissue distribution, and functional expression of the human Na+/H+ exchanger NHE2. Am. J. Physiol. 277, G383–G390.

    PubMed  CAS  Google Scholar 

  • Malandro, M.S., M.J. Beveridge, D.A. Novak, and M.S. Kilberg (1996). Effect of low-protein diet-induced intrauterine growth retardation on ra placental amino acid transport. Am. J. Physiol. 271, C295–C303.

    PubMed  CAS  Google Scholar 

  • Marie, H., D. Billups, F.K. Bedford, A. Dumoulin, R.K. Goyal, G.D. Longmore et al. (2002). The amino terminus of the glial glutamate transporter GLT-1 interacts with the LIM protein Ajuba. Mol. Cell. Neurosci. 19, 152–164.

    PubMed  CAS  Google Scholar 

  • Matsuo, H., Y. Kanai, J.Y. Kim, A. Chairoungdua, D. K. Kim, J. Inatomi et al. (2002). Identification of a novel Na+-independent acidic amino acid transporter with structural similarity to the member of a heterodimeric amino acid transporter family associated with unknown heavy chains. J. Biol. Chem. 277, 21017–21026.

    PubMed  CAS  Google Scholar 

  • Matthews, J.C., M.J. Beveridge, M.S. Malandro, D.A. Novak, and M.S. Kilberg (1998a). Response of placental amino acid transport to gestational age and intrauterine growth retardation. Proc. Nutr. Soc. 57, 257–263.

    PubMed  CAS  Google Scholar 

  • Matthews, J.C., M.J. Beveridge, M.S. Malandro, J.D. Rothstein, M. Campbell-Thompson, J.W. Verlander et al. (1998b). Activity and protein localization of multiple glutamate transporters in gestation day 14 vs. day 20 rat placenta. Am. J. Physiol. 274, C603–C614.

    PubMed  CAS  Google Scholar 

  • Matthews, J.C., M.J. Beveridge, E. Dialynas, A. Bartke, M.S. Kilberg, and D.A. Novak (1999). Placental anionic and cationic amino acid transporter expression in growth hormone overexpressing and null IGF-II or null IGF-I receptor mice. Placenta 20, 639–650.

    PubMed  CAS  Google Scholar 

  • Matthews, J.C. (2000). Amino acid and peptide transport systems. In J.P.F. D’Mello (ed.), Farm Animal Metabolism and Nutrition. CABI Publishing, New York, pp. 3–23.

    Google Scholar 

  • Matthews, J.C. and K.A. Anderson (2002). Recent advances in amino acids transporters and excitatory amino acid receptors. Curr. Opin. Clin. Nutr. Metab. Care 5, 77–84.

    PubMed  CAS  Google Scholar 

  • McGivan, J.D. (1998). Rat hepatoma cells express novel transport systems for glutamine and glutamate in addition to those present in normal hepatocytes. Biochem J. 330, 255–260.

    PubMed  CAS  Google Scholar 

  • Meijer, A.J., W.H. Lamers, and R.A.F.M. Chamuleau (1990). Nitrogen metabolism and ornithine cycle function. Physiol. Rev. 70, 701–748.

    PubMed  CAS  Google Scholar 

  • Moe, A.J. and C.H. Smith (1989). Anionic amino acid uptake by microvillus membrane vesicles from human placenta. Am. J. Physiol. 257, C1005–C1011.

    PubMed  CAS  Google Scholar 

  • Moore, R.D. (1993). Effect of insulin upon the sodium pump in frog skeletal muscle. J. Physiol. 232, 23–45.

    Google Scholar 

  • Moores, R.R., P.R. Vaughn, F.C. Battaglia, P.V. Fennessey, R.B. Wilkening, and G. Meschia (1994). Glutamate metabolism in fetus and placenta of late-gestation sheep Am. J. Physiol. 267,:R89–R96.

    PubMed  CAS  Google Scholar 

  • Moorman, A.F., J.L. Vermeulen, R. Charles, and W.H. Lamers (1989). Localization of ammonia-metabolizing enzymes in human liver: ontogenesis of heterogeneity. Hepatology 9, 367–372.

    PubMed  CAS  Google Scholar 

  • Moorman, A.F., P.A. de Boer, A.T. Das, W.T. Labruyere, R. Charles, and W.H. Lamers (1990). Expression patterns of mRNAs for ammonia-metabolizing enzymes in the developing rat: The ontogenesis of hepatocyte heterogeneity. Histochem. J. 22, 457–468.

    PubMed  CAS  Google Scholar 

  • Munir, M., D.M. Correale, and M.B. Robinson (2000). Substrate-induced up-regulation of Na+-dependent glutamate transport activity. Neurochem. Int. 37, 147–162.

    PubMed  CAS  Google Scholar 

  • Newsholme, E.A. and M. Parry-Billings (1990). Properties of glutamate release from muscle and its importance for the immune system. J. Parent. Ent. Nutr. 14, 63S–67S.

    CAS  Google Scholar 

  • Nicholson, B. and J.D. McGivan (1996). Induction of high affinity glutamate transport activity by amino acid deprivation in renal epithelial cells does not involve an increase in the amount of transporter protein. J. Biol. Chem. 271, 12159–12164.

    PubMed  CAS  Google Scholar 

  • Nissim, I. (1999). Newer aspects of glutamine/glutamate metabolism: The role of acute pH changes. Am. J. Physiol. 277, F493–F497.

    PubMed  CAS  Google Scholar 

  • Novak, D.A. and M.J. Beveridge (2000). Anionic amino acid transporter expression in late gestation rodent yolk sac. Placenta 21, 834–839.

    PubMed  CAS  Google Scholar 

  • Novak, D., F. Quiggle, C. Artime, and M. Beveridge (2001). Regulation of glutamate transport and transport proteins in a placental cell line. Am. J. Physiol. Cell Physiol. 281, C1014–C1022.

    PubMed  CAS  Google Scholar 

  • Palacin, M., R. Estevez, J. Bertran, and A. Zorzano (1998). Molecular biology of mammalian plasma membrane amino acid transporters. Physiol. Rev. 78, 969–1054.

    PubMed  CAS  Google Scholar 

  • Patterson, B.W., J.F. Horowitz, G. Wu, M. Watford, S.W. Coppack, and S. Klein (2002). Regional muscle and adipose tissue amino acid metabolism in lean and obese women. Am. J. Endocrinol. Metab. 282, E931–E936.

    CAS  Google Scholar 

  • Peghini, P., J. Janzen, and W. Stoffel (1997). Glutamate transporter EAAC-1-deficient mice develop dicarboxylic aminoaciduria and behavioral abnormalities but no neurodegeneration. EMBO J. 16, 3822–3832.

    PubMed  CAS  Google Scholar 

  • Pines, G., N.C. Danbolt, M. Borjas, Y. Zhang, A. Bendahan, L. Eide et al. (1992). Cloning and expression of a rat brain L-glutamate transporter. Nature 360, 464–467.

    PubMed  CAS  Google Scholar 

  • Plaitakis, A. and J.T. Caroscio (1987). Abnormal glutamate metabolism in amyotrophic lateral sclerosis. Annu. Neurol. 22, 575–579.

    CAS  Google Scholar 

  • Plakidou-Dymock, S. and J.D. McGivan (1993). Regulation of the glutamate transporter by amino acid deprivation and associated effects on the level of EAAC1 mRNA in the renal epithelial cell line NBL-I. Biochem J. 295, 749–755.

    PubMed  CAS  Google Scholar 

  • Pollard, M., D. Meridith, and J.D. McGivan (2002). Characterization and cloning of a Na+-dependent broad-specificity neutral amino acid transporter from NBL-1 cells: A novel member of the ASC/B0 transporter family. Biochim. Biophys. Acta 1561, 202–208.

    PubMed  CAS  Google Scholar 

  • Reeds, P.J., D.G. Burrin, F. Jahoor, L. Wykes, J. Henry, and E.M. Frazer (1996). Enteral glutamate is almost completely metabolized in first pass by the gastrointestinal tract of infant pigs. Am. J. Physiol. 270, E413–E418.

    PubMed  CAS  Google Scholar 

  • Rennie, M.J., J.L. Bowtell, M. Bruce, and S.E.O. Khogali (2001). Interaction between glutamate availability and metabolism of glycogen, tricarboxylic acid cycle intermediates and glutathione. J. Nutr. 131, 2488S–2490S.

    PubMed  CAS  Google Scholar 

  • Revest, P.A. and P.F. Baker (1988). Glutamate transport in large muscle fibres of Balanus nubilus. J. Neurochem. 50, 94–102.

    PubMed  CAS  Google Scholar 

  • Ritchie, J.W., F.E. Baird, G.R. Christie, A. Stewart, S.Y. Low, H.S. Hundal et al. (2001). Mechanisms of glutamine transport in rat adipocytes and acute regulation by cell swelling. Cell Physiol. Biochem. 11, 259–70.

    PubMed  CAS  Google Scholar 

  • Robinson, M.B. (2002). Regulated trafficking of neurotransmitter transporters: Common notes but different melodies. J. Neurochem. 80, 1–11.

    PubMed  CAS  Google Scholar 

  • Rolinski, B., F.A. Baumeister, and A.A. Roscheer (2001). Determination of amino acid tissue concentrations by microdialysis: Method evaluation and relation to plasma values. Amino Acids 21, 129–138.

    PubMed  CAS  Google Scholar 

  • Rossi, D.J., T. Oshima, and D. Attwell (2000). Glutamate release in severe brain ischemia is mainly by reversed uptake. Nature 403, 316–321.

    PubMed  CAS  Google Scholar 

  • Saier, Jr., M.H. (1999). A proposed system for classification of transmembrane transport proteins in living organisms. In L.J. Van Winkle (ed.), Biomembrane Transport. Academic Press, San Diego, CA, pp. 265–276.

    Google Scholar 

  • Sato, H., M. Tamba, T. Ishii, and S. Bannai (1999). Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. J. Biol. Chem. 276, 11455–11458.

    Google Scholar 

  • Schlag, B.D., J.R. Vondrasek, M. Munir, A. Kalandadze, O.A. Zelenaia, J.D. Rothstein et al. (1998). Regulation of the glial Na+-dependent glutamate transporters by cyclic AMP analogs and neurons. Mol. Pharmacol. 53, 355–369.

    PubMed  CAS  Google Scholar 

  • Sims, K.D., D.J. Straff, and M.B. Robinson (2000). Platelet-derived growth factor rapidly increases activity and cell surface expression of the EAAC1 subtype of glutamate transporter through activation of phosphatidylinositol 3-kinase. J. Biol. Chem. 274, 5228–5237.

    Google Scholar 

  • Smith, E.M. and M. Watford (1988). Rat hepatic glutaminase: Purification and immunochemical characterization. Arch. Biochem. Biophys. 260, 740–751.

    PubMed  CAS  Google Scholar 

  • Smith, E.M. and M. Watford (1990). Molecular cloning of a cDNA for rat glutaminase. Sequence similarity to kidney-type glutaminase. J. Biol. Chem. 265, 10631–10636.

    PubMed  CAS  Google Scholar 

  • Snodgrass, P.J. and P. Lund (1984). Allosteric properties of phosphate-activated glutaminase of human liver mitochondria. Biochim. Biophys. Acta 798, 21–27.

    PubMed  CAS  Google Scholar 

  • Spijkers, J.A.A., M.J.B. van den Hoff, T.B.M. Hakvoort, J.L.M. Vermeulen, S. Tesink-Taekema, and W.H. Lamers (2001) Foetal rise in hepatic enzymes follows decline in c-met and hepatic growth factor expression. J. Hepatology 34, 699–710.

    CAS  Google Scholar 

  • Stevens, B.R., H.J. Ross, and E.M. Wright (1982). Multiple transport pathways for neutral amino acids in rabbit jejunal brush border vesicles. J. Membr. Biol. 66, 213–225.

    PubMed  CAS  Google Scholar 

  • Stoll, B., S. McNelly, H.P. Butcher, and D. Haussinger (1991). Functional hepatocyte heterogeneity in glutamate, aspartate and α-ketoglutarate uptake: A histoautoradiographical study. Hepatology 13, 247–253.

    PubMed  CAS  Google Scholar 

  • Storck, T., S. Schulte, K. Hofmann, and W. Stoffel (1992). Structure, expression, and functional analysis of a Na+-dependent glutamate/aspartate transporter from rat brain. Proc. Natl. Acad. Sci. USA. 89, 10955–10959.

    PubMed  CAS  Google Scholar 

  • Sugawara, M., T. Nakanishi, Y.-J. Fei, W. Huang, M.E. Ganapathy, F.H. Leibach et al. (2000a). Cloning of an amino acid transporter with functional characteristics and tissue expression pattern identical to that of system A. J. Biol. Chem. 275, 16473–16477.

    PubMed  CAS  Google Scholar 

  • Sugawara, M., T. Nakanishi, Y.-J. Fei, R.G. Martindale, M.E. Ganapathy, F.H. Leibach et al. (2000b). Structure and function of ATA3, a new subtype of amino acid transport system A, primarily expressed in the liver and skeletal muscle. Biochim. Biophys. Acta 1509, 7–13.

    PubMed  CAS  Google Scholar 

  • Summers, L.K., P. Arner, V. Ilic, M.L. Clark, S.M. Humphreys, and K.N. Frayn (1998). Adipose tissue metabolism in the postprandial period: microdialysis and arteriovenous techniques compared. Am. J. Physiol. 274, E651–655.

    PubMed  CAS  Google Scholar 

  • Tagari, H. and E.N. Bergman (1978). Intestinal disappearance and portal blood appearance of amino acids in sheep. J. Nutr. 108, 790–803.

    PubMed  CAS  Google Scholar 

  • Tanaka, K. and I. Welbourne (2001). Enhanced ammonium excretion in mice lacking the glutamate transporter GLT-1. JASN 108, A0287.

    Google Scholar 

  • Taylor, P.M. and M.J. Rennie (1987). Perivenous localisation of Na-dependent glutamate transport in perfused rat liver. FEBS Lett. 221, 370–374.

    PubMed  CAS  Google Scholar 

  • Trotti, D., M. Aoki, P. Pasinella, U.V. Berger, N.C. Danbolt, R.H. Brown, Jr. et al. (2001). Amyotrophic lateral sclerosis-linked glutamate transporter mutant has impaired glutamate clearance capacity. J. Biol. Chem. 276, 576–582.

    PubMed  CAS  Google Scholar 

  • Ushmorov, A., V. Hack, and W. Druge (1999). Differential reconstitution of mitochondrial respiratory chain activity and plasma redox state by cysteine and ornithine in a model of cancer cachexia. Cancer Res. 59, 3527–3534.

    PubMed  CAS  Google Scholar 

  • Utsunomiya-Tate, N., H. Endou, and Y. Kanai (1996). Cloning and functional characterization of a System ASC-like Na+-dependent neutral amino acid transporter. J. Biol. Chem. 271, 14883–14890.

    PubMed  CAS  Google Scholar 

  • van Milgen, J. (2002). Modeling biochemical aspects of energy metabolism in mammals. J. Nutr. 132, 3195–2002.

    PubMed  Google Scholar 

  • Vaughn, P.R., C. Lobo, F.C. Battaglia, P.V. Fennessey, R.B. Wilkening, and G. Meschia (1995). Glutamineglutamate exchange between placenta and fetal liver. Am. J. Physiol. 268, E705–E711.

    PubMed  CAS  Google Scholar 

  • Verrey, F., C. Meir, G. Rossier, and L.C. Kuhn (2000). Glycoprotein-associated amino acid exchanges: Broadening the range of transport specificity. Eur. J. Physiol. 440, 503–512.

    CAS  Google Scholar 

  • Vesli, R.F., M. Klaude, O.E. Rooyackers, I. Tjader, H. Barle, and J. Wernerman (2002). Longitudinal pattern of glutamine/glutamate balance across the leg in long-stay intensive care patients. Clin. Nutr. 21, 505–514.

    Google Scholar 

  • Wagenaar, G.T., W.J. Geerts, R.A. Chamuleau, N.E. Deutz, and W.H. Lamars (1994). Lobular patterns of expression and enzyme activities of glutamine synthetase, carbamoylphosphate synthase and glutamate dehydrogenase during postnatal development of the porcine liver. Biochim. Biophys. Acta 1200, 265–70.

    PubMed  CAS  Google Scholar 

  • Wang, H., W. Huang, M. Sugawara, L.D. Devoe, F.H. Leibach, P.D. Prasad et al. (2000). Cloning and functional expression of ATA1, a subtype of amino acid transporter A, from human placenta. Biochem. Biophys. Res. Commun. 14, 1175–1179.

    Google Scholar 

  • Watford, M. (1993). Hepatic glutaminase expression: relationship to kidney-type glutaminase and to the urea cycle. FASEB J. 7, 1468–1474.

    PubMed  CAS  Google Scholar 

  • Watford, M. (2000). Glutamine and glutamate metabolism across the liver sinusoid. J. Nutr. 130, 983S–987S.

    PubMed  CAS  Google Scholar 

  • Welbourne, T.C., and J.C. Matthews (1999). Glutamate transport and renal function. Am. J. Physiol. 277, F501–F505.

    PubMed  CAS  Google Scholar 

  • Welbourne, T. and I. Nissim, (2001). Regulation of mitochondrial glutamine/glutamate metabolism by glutamate transport: Studies with 15N. Am. J. Physiol. Cell Physiol. 280, C1151–C1159.

    PubMed  CAS  Google Scholar 

  • Welbourne, T., R. Routh, M. Yudkoff, and I. Nissim (2001). The glutamine/glutamate couplet and cellular function. News Physiol. Sci. 16, 157–160.

    PubMed  CAS  Google Scholar 

  • Wu, G. (1998). Intestinal mucosal amino acid catabolism. J. Nutr. 128, 1249–1252.

    PubMed  CAS  Google Scholar 

  • Yao, D., B. Mackenzie, H. Ming, H. Varoqui, H. Zhu, M.A. Hediger et al. (2000). A novel system A isoform mediating Na+/neutral amino acid transport. J. Biol. Chem. 275, 22790–22797.

    PubMed  CAS  Google Scholar 

  • Zerangue, N. and M.P. Kavanaugh (1996a). ASCT-1 is a neutral amino acid exchanger with chloride channel activity. J. Biol. Chem. 271, 27991–27994.

    PubMed  CAS  Google Scholar 

  • Zerangue, N. and M.P. Kavanaugh (1996b). Flux coupling in a neuronal transporter. Nature 383, 634–637.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic / Plenum Publishers, New York

About this chapter

Cite this chapter

Matthews, J.C. (2005). Expression of Non-Organelle Glutamate Transporters to Support Peripheral Tissue Function. In: Gill, S., Pulido, O. (eds) Glutamate Receptors in Peripheral Tissue: Excitatory Transmission Outside the CNS. Springer, Boston, MA. https://doi.org/10.1007/0-306-48644-X_3

Download citation

Publish with us

Policies and ethics