Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ader, R., N. Cohen, and D. Felten (1995). Psychoneuroimmunology: Interactions between the nervous system and the immune system. Lancet 345, 99–103.

    Article  PubMed  CAS  Google Scholar 

  • Alexander, J.W. (1993). Immunoenhancement via enteral nutrition. Arch. Surg. 128, 1242–1245.

    PubMed  CAS  Google Scholar 

  • Alfredson, H. and R. Lorentzon (2002). Chronic tendon pain: No signs of chemical inflammation but high concentrations of the neurotransmitter glutamate. Implications for treatment? Curr. Drug Targets 3, 43–54.

    Article  PubMed  CAS  Google Scholar 

  • Alfredson, H., B.O. Ljung, K. Thorsen, and R. Lorentzon (2000). In vivo investigation of ECRB tendons with microdialysis technique—no signs of inflammation but high amounts of glutamate in tennis elbow. Acta Orthop. Scand. 71, 475–479.

    Article  PubMed  CAS  Google Scholar 

  • Alfredson, H., S. Forsgren, K. Thorsen, and R. Lorentzon (2001). In vivo microdialysis and immunohistochemical analyses of tendon tissue demonstrated high amounts of free glutamate and glutamate NMDAR1 receptors, but no signs of inflammation, in Jumper’s knee. J. Orthop. Res. 19, 881–886.

    Article  PubMed  CAS  Google Scholar 

  • Allan, N.J. and D. Attwell (2001). A chemokine-glutamate connection. Nat. Neurosci. 4, 676–678.

    Article  Google Scholar 

  • Amenta, F., E. Bronzetti, L. Felici, A. Ricci, and S.K. Tayebati (1999). Dopamine D2-like receptors on human peripheral blood lymphocytes: A radioligand binding assay and immunocytochemical study. J. Auton. Pharmacol. 19, 151–159.

    Article  PubMed  CAS  Google Scholar 

  • Antonica, A., E. Ayroldi, F. Magni, and N. Paolocci (1996). Lymphocyte traffic changes induced by monolateral vagal denervation in mouse thymus and peripheral lymphoid organs. J. Neuroimmunol. 64, 115–122.

    Article  PubMed  CAS  Google Scholar 

  • Ardawi, M.S.M. (1988). Glutamine and glucose metabolism in human peripheral lymphocytes. Metabolism 37, 99–103.

    Article  PubMed  CAS  Google Scholar 

  • Astapova, M.V., V.M. Lipkin, M.V. Askhipova, S.G. Andreeva, S.M. Dranitsyna, M.I. Merkulova et al. (1999). L-glutamic acid—a modulator of the physiological status of myeloid series blood cells. Bioorganicheskaya Khimiya 25, 816–820.

    PubMed  CAS  Google Scholar 

  • Baciu, I. (1988). Nervous control of the phagocytic system. Int. J. Neurosci. 41, 127–141.

    PubMed  CAS  Google Scholar 

  • Bajjalieh, S. (2001). SNAREs take the stage: A prime time to trigger neurotransmitter secretion. Trends Neurosci. 24, 678–680.

    Article  PubMed  CAS  Google Scholar 

  • Bannai, S. (1986). Exchange of cystine and glutamate across plasma membrane of human fibroblasts. J. Biol. Chem. 261, 2256–2263.

    PubMed  CAS  Google Scholar 

  • Bannai, S. and N. Tateishi (1986). Role of membrane transport in metabolism and function of glutathione in mammals. J. Membr. Biol. 89, 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Basu, S. and P.S. Dasgupta (2000). Dopamine, a neurotransmitter, influences the immune system. J. Neuroimmunol. 102, 113–124.

    Article  PubMed  CAS  Google Scholar 

  • Belokrylov, G.A., O. Ya Popova, and E.I. Sorochinskaya (1999). Immuno-, phagocytosis-modulating and antitoxic properties of dipeptides are defined by the activity of their constituent amino acids. Int. J. Immunopharm. 21, 879–883.

    Article  CAS  Google Scholar 

  • Bergeret, M., M. Khrestchatisky, E. Tremblay, A. Bernard, A. Gregoire, and C. Chany (1998). GABA modulates cytotoxicity of immunocompetent cells expressing GABA A receptor subunits. Biomed. Pharmacother. 52, 214–219.

    Article  PubMed  CAS  Google Scholar 

  • Bergquist, J., A. Tarkowski, R. Ekman, and A. Ewing (1994). Discovery of endogenous catecholamines in lymphocytes and evidence for catecholamine regulation of lymphocyte function via an autocrine loop. Proc. Natl. Acad. Sci. USA 91, 12912–12916.

    Article  PubMed  CAS  Google Scholar 

  • Bergquist, J., A. Tarkowski, A. Ewing, and R. Ekman (1998). Catecholaminergic suppression of immunocompetent cells. Immunol. Today 19, 562–567.

    Article  PubMed  CAS  Google Scholar 

  • Besedovsky, H.O., E. Sorkin, M. Keller, and J. Müller (1975). Changes in blood hormone levels during the immune response. Proc. Soc. Exp. Biol. Med. 150, 466–470.

    PubMed  CAS  Google Scholar 

  • Besedovsky, H.O., A. Del Rey, and E. Sorkin (1979). Antigenic competition between horse and sheep red blood cells is a hormone-dependent phenomenon. Clin. Exp. Immunol. 37, 106–113.

    PubMed  CAS  Google Scholar 

  • Bezzi, P., M. Domercq, L. Brambilla, R. Galli, D. Schols, E. De Clercq et al. (2001). CXCR4-activated astrocyte glutamate release via TNF-a: Amplification by microglia triggers neurotoxicity. Nat. Neurosci. 4, 702–710.

    Article  PubMed  CAS  Google Scholar 

  • Bhangu, P.S., P.G. Genever, G.J. Spencer, T.S. Grewal, and T.M. Skerry (2001). Evidence for targeted vesicular glutamate exocytosis in osteoblasts. Bone 29, 16–23.

    Article  PubMed  CAS  Google Scholar 

  • Blunck, R., O. Scheel, M. Muller, K. Brandenburg, U. Seitzer, and U. Seydel (2001). New insights into endotoxin-induced activation of macrophages: Involvement of a K+ channel in transmembrane signaling. J. Immunol. 166, 1009–1015.

    PubMed  CAS  Google Scholar 

  • Brand, K., J. von Hintzenstern, K. Langer, and W. Fekl (1987). Pathways of glutamine and glutamate metabolism in resting and proliferating rat thymocytes: Comparison between free and peptide-bound glutamine. J. Cell. Physiol. 132, 559–564.

    Article  PubMed  CAS  Google Scholar 

  • Bruns, D. and Jahn, R. (2002). Molecular determinants of exocytosis. Pflügers Arch.-Eur. J. Physiol. 443, 333–338.

    Article  CAS  Google Scholar 

  • Bulloch, K. and R.Y. Moore (1981). Innervation of the thymus gland by brain stem and spinal cord in mouse and rat. Am. J. Anat. 162, 157–166.

    Article  PubMed  CAS  Google Scholar 

  • Castell, L.M. and E.A. Newsholme (1997). The effects of oral glutamine supplementation on athletes after prolonged, exhaustive exercise. Nutrition 13, 738–742.

    Article  PubMed  CAS  Google Scholar 

  • Chiarugi, A., M. Calvani, E. Meli, E. Traggiai, and F. Moroni (2001). Synthesis and release of neurotoxic kynurenine metabolites by human monocyte-derived macrophages. J. Neuroimmunol. 120, 190–198.

    Article  PubMed  CAS  Google Scholar 

  • Curi, T.C., M.P. De Melo, R.B. De Azevedo, T.M. Zorn, and R. Curi (1997). Glutamine-utilization by rat neutrophils: Presence of phosphate-dependent glutaminase. Am. J. Physiol. 273, C1124–C1129.

    PubMed  CAS  Google Scholar 

  • Danbolt, N.C. (2001). Glutamate uptake. Prog. Neurobiol. 65, 1–105.

    Article  PubMed  CAS  Google Scholar 

  • Douglas, S.D. (1999). Monocytes/macrophages in diagnosis and immunopathogenesis. Clin. Diagn. Lab. Immunol. 6, 283–285.

    PubMed  CAS  Google Scholar 

  • Dröge, W., H.P. Eck, M. Betzler, and H. Naher (1987). Elevated plasma glutamate levels in colorectal carcinoma patients and in patients with acquired immunodeficiency syndrome (AIDS). Immunobiology 174, 473–479.

    PubMed  Google Scholar 

  • Dröge, W., H.-P. Eck, M. Betzler, P. Schlag, P. Drings, and W. Ebert (1988). Plasma glutamate concentration and lymphocyte activity. J. Cancer Res. Clin. Oncol. 114, 124–128.

    Article  PubMed  Google Scholar 

  • Dröge, W., K. Schulze-Osthoff, S. Mihm, D. Galter, H. Schenk, H.P. Eck et al. (1994). Functions of glutathione and glutathione disulfide in immunology and immunopathology. FASEB J. 8, 1131–1138.

    PubMed  Google Scholar 

  • Eck, H.P., P. Drings, and W. Dröge (1989a). Plasma glutamate levels, lymphocyte reactivity and death rate in patients with bronchial carcinoma. J. Cancer Res. Clin. Oncol. 115, 571–574.

    Article  PubMed  CAS  Google Scholar 

  • Eck, H.P., H. Frey, and W. Dröge (1989b). Elevated plasma glutamate concentrations in HIV-1-infected patients may contribute to loss of macrophage and lymphocyte functions. Int. Immunol. 1, 367–372.

    Article  PubMed  CAS  Google Scholar 

  • Espey, M.G. and A.S. Basile (1999). Glutamate augments retrovirus-induced immunodeficiency through chronic stimulation of the hypothalamic-pituitary-adrenal axis. J. Immunol. 162, 4998–5002.

    PubMed  CAS  Google Scholar 

  • Espey, M.G., J.R. Moffett, and M.A. Namboodiri (1995). Temporal and spatial changes of quinolinic acid immunoreactivity in the immune system of lipopolysaccharide-stimulated mice. J. Leukoc. Biol. 57, 199–206.

    PubMed  CAS  Google Scholar 

  • Faden, A.I., S.A. Ivanova, A.G. Yakovlev, and A.G. Mukhin (1997). Neuroprotective effects of group III mGluR in traumatic neuronal injury. J. Neurotrauma 14, 885–895.

    PubMed  CAS  Google Scholar 

  • Fatani, J.A., M.A. Quayyum, L. Mehta, and U. Singh (1986). Parasympathetic innervation of the thymus: A histochemical and immunocytochemical study. J. Anat. 147, 115–119.

    PubMed  CAS  Google Scholar 

  • Felten, D.L., S.Y. Felten, S.L. Carlson, J.A. Olschowka, and S. Livnat (1985). Noradrenergic and peptidergic innervation of lymphoid tissue. J. Immunol. 135,Suppl.2, 755–765.

    Google Scholar 

  • Felten, S.Y. and J. Olschowka (1987). Noradrenergic sympathetic innervation of the spleen: II. Tyrosine hydroxylase (TH)-positive nerve terminals form synapticlike contacts on lymphocytes in the splenic white pulp. In J.R. Perez-Polo, K. Bulloch, R.H. Angeletti, G.A. Hashim, and J. de Vellis (eds), Neuroimmunomodulation, Alan R. Liss, Inc., New York, pp. 70–74.

    Google Scholar 

  • Felten, D.L., S.Y. Felten, D.L. Bellinger, S.L. Carlson, K.D. Ackerman, K.S. Madden et al. (1987). Noradrenergic sympathetic neural interactions with the immune system: Structure and function. Immunol. Rev. 100, 225–260.

    Article  PubMed  CAS  Google Scholar 

  • Friedman, E.M. and M.R. Irwin (1997). Modulation of immune cell function by the autonomic nervous system. Pharmacol. Ther. 74, 27–38.

    Article  PubMed  CAS  Google Scholar 

  • Galasso, J.M., M.J. Miller, R.M. Cowell, J.K. Harrison, J.S. Warren, and F.S. Silverstein (2000). Acute excitotoxic injury induces expression of monocyte chemoattractant protein-1 and its receptor, CCR2, in neonatal rat brain. Exp. Neurol. 165, 295–305.

    Article  PubMed  CAS  Google Scholar 

  • Ghosh, P.K., N. Baskaran, and A.N. van den Pol (1997). Developmentally regulated gene expression of all eight metabotropic glutamate receptors in hypothalamic suprachiasmatic and arcuate nuclei—a PCR analysis. Dev. Brain Res. 102, 1–12.

    Article  CAS  Google Scholar 

  • Haas, H.S. and K. Schauenstein (1997). Neuroimmunomodulation via limbic structures—The neuroanatomy of psychoimmunology. Prog. Neurobiol. 51, 195–222.

    Article  PubMed  CAS  Google Scholar 

  • Haas, H.S. and K. Schauenstein (2001). Immunity, hormones, and the brain. Allergy 56, 470–477.

    Article  PubMed  CAS  Google Scholar 

  • Hack, V., O. Stutz, R. Kinscherf, M. Schykowski, M. Kellerer, E. Holm et al. (1996). Elevated venous glutamate levels in (pre)catabolic conditions result at least partly from a decreased glutamate transport activity. J. Mol. Med. 74, 337–343.

    Article  PubMed  CAS  Google Scholar 

  • Hackam, D.J., O.D. Rotstein, M.K. Bennett, A. Klip, S. Grinstein, and M.F. Manolson (1996). Characterization and subcellular localization of target membrane soluble NSF attachment protein receptors (t-SNAREs) in macrophages. Syntaxins 2, 3, and 4 are present on phagosomal membranes. J. Immunol. 156, 4377–4383.

    PubMed  CAS  Google Scholar 

  • Heck, S., R. Enz, C. Richter-Landsberg, and D.H. Blohm (1997). Expression of eight metabotropic glutamate receptor subtypes during neuronal differentiation of P19 embryocarcinoma cells: A study by RT-PCR and in situ hybridization. Dev. Brain Res. 101, 85–91.

    Article  CAS  Google Scholar 

  • Hegg C.C. and Thayer S.A. (1999). Monocytic cells secrete factors that evoke excitatory synaptic activity in rat hippocampal cultures. Eur. J. Pharmacol. 385, 231–237.

    Article  PubMed  CAS  Google Scholar 

  • Heijnen, C.J. and A. Kavelaars (1999). The importance of being receptive. J. Neuroimmunol. 100, 197–202.

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann, H.J., T. Bjerke, M. Karawajczyk, R. Dahl, M.A. Knepper, and S. Nielsen (2001). SNARE proteins are critical for regulated exocytosis of ECP from human eosinophils. Biochem. Biophys. Res. Commun. 282, 194–199.

    Article  PubMed  CAS  Google Scholar 

  • Hu, S., W.S. Sheng, L.C. Ehrlich, P.K. Peterson, and C.C. Chao (2000). Cytokine effects on glutamate uptake by human astrocytes. Neuroimmunomodulation 7, 153–159.

    Article  PubMed  CAS  Google Scholar 

  • Hu, Y., H. Dietrich, M. Herold, P.C. Heinrich, and G. Wick (1993). Disturbed immuno-endocrine communication via the hypothalamo-pituitary-adrenal axis in autoimmune disease. Int. Arch. Allergy Immunol. 102, 232–241.

    PubMed  CAS  Google Scholar 

  • Kaplan, D. (1996). Autocrine secretion and the physiological concentration of cytokines. Immunol. Today 17, 303–304.

    Article  PubMed  CAS  Google Scholar 

  • Kawashima, K. and T. Fujii (2000). Extraneuronal cholinergic system in lymphocytes. Pharmacol. Ther. 86, 29–48.

    Article  PubMed  CAS  Google Scholar 

  • Kim-Park, W.K., M.A. Moore, Z.W. Hakki, and M.J. Kowolik (1997). Activation of the neutrophil respiratory burst requires both intracellular and extracellular calcium. Ann. N. Y. Acad. Sci. 832, 394–404.

    Article  PubMed  CAS  Google Scholar 

  • Klegeris, A., D.G. Walker, and P.L. McGeer, (1997). Regulation of glutamate in cultures of human monocytic THP-1 and astrocytoma U-373 MG cells. J. Neuroimmunol. 78, 152–161.

    Article  PubMed  CAS  Google Scholar 

  • Klimberg, V.S. and J.L. McClellan, (1996). Claude H. Organ, Jr. Honorary Lectureship. Glutamine, cancer, and its therapy. Am. J. Surg. 172, 418–424.

    Article  PubMed  CAS  Google Scholar 

  • Koennecke, L.A., M.A. Zito, M.G. Proescholdt, N. van Rooijen, and M.P. Heyes (1999). Depletion of systemic macrophages by liposome-encapsulated clodronate attenuates increases in brain quinolinic acid during CNS-localized and systemic immune activation. J. Neurochem. 73, 770–779.

    Article  PubMed  CAS  Google Scholar 

  • Kohm, A.P. and V.M. Sanders (2000). Norepinephrine: A messenger from the brain to the immune system. Immunol. Today 21, 539–542.

    Article  PubMed  CAS  Google Scholar 

  • Kostanyan, I.A., M.I. Merkulova, E.V. Navolotskaya, and R.I. Nurieva (1997). Study of interaction between L-glutamate and human blood lymphocytes. Immunol. Lett. 58, 177–180.

    Article  PubMed  CAS  Google Scholar 

  • Kostanyan, I.A., R.I. Nurieva, T.N. Lepikhova, M.V. Astapova, E.V. Navolotskaya, V.P. Zavyalov et al. (1998a). Appearance of glutamate receptors on the surface of HL-60 cells upon differentiation. Bioorganicheskaya Khimiya 24, 468–470.

    CAS  Google Scholar 

  • Kostanyan, I.A., R.I. Nurieva, E.V. Navolotskaya, M.V. Astapova, S.M. Dranitsyna, V.P. Zavyalov et al. (1998b). Effect of L-glutamic acid on the reception of cytokines by HL-60 cells. Bioorganicheskaya Khimiya 24, 3–9.

    CAS  Google Scholar 

  • Lai, Z.-F., Y.-Z. Chen, Y. Nishimura, and K. Nishi (2000). An amiloride-sensitive and voltage-dependent Na+ channel in an HLA-DR-restricted human T cell clone. J. Immunol. 165, 83–90.

    PubMed  CAS  Google Scholar 

  • Lawand, N.B., T. McNearney, and K.N. Westlund (2000). Amino acid release into the knee joint: Key role in nociception and inflammation. Pain 86, 69–74.

    Article  PubMed  CAS  Google Scholar 

  • Lepple-Wienhues, A., I. Szabò, U. Wieland, L. Heil, E. Gulbins, and F. Lang (2000). Tyrosine kinases open lymphocyte chloride channels. Cell. Physiol. Biochem. 10, 307–312.

    Article  PubMed  CAS  Google Scholar 

  • Levite, M., Y. Chowers, Y. Ganor, M. Besser, R. Hershkovits, and L. Cahalon (2001). Dopamine interacts directly with its D3 and D2 receptors on normal human T cells, and activates beta1 integrin function. Eur. J. Immunol. 31, 3504–3512.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, R.S. (2001). Calcium signaling mechanisms in T lymphocytes. Ann. Rev. Immunol. 19, 497–521.

    Article  CAS  Google Scholar 

  • Lin, C.-M., S.F. Abcouwer, and W.W. Souba (1999). Effect of dietary glutamate on chemotherapy-induced immunosuppression. Nutrition 15, 687–696.

    Article  PubMed  CAS  Google Scholar 

  • Liu, X.B., A. Munoz, and E.G. Jones (1998). Changes in subcellular localization of metabotropic glutamate receptor subtypes during postnatal development of mouse thalamus. J. Comp. Neurol. 395, 450–465.

    Article  PubMed  CAS  Google Scholar 

  • Lombardi, G., C. Dianzani, G. Miglio, P.L. Canonico, and R. Fantozzi (2001). Characterization of ionotropic glutamate receptors in human lymphocytes. Br. J. Pharmacol. 133, 936–944.

    Article  PubMed  CAS  Google Scholar 

  • Maiese, K., M. Swiriduk, and M. TenBroeke (1996). Cellular mechanisms of protection by metabotropic glutamate receptors during anoxia and nitric oxide toxicity. J. Neurochem. 66, 2419–2428.

    PubMed  CAS  Google Scholar 

  • Malone, J.D., M. Richards, and A.J. Kahn (1986). Human peripheral monocytes express putative receptors for neuroexcitatory amino acids. Proc. Natl. Acad. Sci. USA 83, 3307–3310.

    Article  PubMed  CAS  Google Scholar 

  • Mason, D., I. MacPhee, and F. Antoni (1990). The role of the neuroendocrine system in determining genetic susceptibility to experimental allergic encephalomyelitis in the rat. Immunology 70, 1–5.

    PubMed  CAS  Google Scholar 

  • McNearney, T., D. Speegle, N. Lawand, J. Lisse, and K.N. Westlund (2000). Excitatory amino acid profiles of synovial fluid from patients with arthritis. J. Rheumatol. 27, 739–745.

    PubMed  CAS  Google Scholar 

  • Mennicken, F., J.G. Chabot, and R. Quirion (2002). Systemic administration of kainic acid in adult rat stimulates expression of the chemokine receptor CCR5 in the forebrain. Glia 37, 124–138.

    Article  PubMed  Google Scholar 

  • Micic, M., G. Leposavic, and N. Ugresic (1994). Relationship between monoaminergic and cholinergic innervation of the rat thymus during aging. J. Neuroimmunol. 49, 205–212.

    Article  PubMed  CAS  Google Scholar 

  • Moreno-Fuenmayor, H., L. Borjas, A. Arrieta, V. Valera, and L. Socorro-Candanoza (1996). Plasma excitatory amino acids in autism. Invest. Clin. 37, 113–128.

    PubMed  CAS  Google Scholar 

  • Mossner, R. and K.P. Lesch (1998). Role of serotonin in the immune system and in neuroimmune interactions. Brain Behav. Immun. 12, 249–271.

    Article  PubMed  CAS  Google Scholar 

  • Nabokina, S., G. Egea, J. Blasi, and F. Mollinedo (1997). Intracellular location of SNAP-25 in human neutrophils. Biochem. Biophys. Res. Commun. 239, 592–597.

    Article  PubMed  CAS  Google Scholar 

  • Nance, D.M., D.A. Hopkins, and D. Bieger (1987). Re-investigation of the innervation of the thymus gland in mice and rats. Brain Behav. Immun. 1, 134–147.

    Article  PubMed  CAS  Google Scholar 

  • Niijima, A. (1995). An electrophysiological study on the vagal innervation of the thymus in the rat. Brain Res. Bull. 38, 319–323.

    Article  PubMed  CAS  Google Scholar 

  • Pawlikowski, M. and J. Kunert-Radek (1995). Failure of excitatory amino acids receptor agonists NMDA and quiscalate to affect the cell proliferation. Pol. J. Pharmacol. 47, 185–187.

    PubMed  CAS  Google Scholar 

  • Plaitakis, A. and J.T. Caroscio (1987). Abnormal glutamate metabolism in amyotrophic lateral sclerosis. Ann. Neurol. 22, 575–579.

    Article  PubMed  CAS  Google Scholar 

  • Purcell, W.M., K.M. Doyle, C. Westgate, and C.K. Atterwill (1996). Characterisation of a functional polyamine site on rat mast cells: Association with a NMDA receptor macrocomplex. J. Neuroimmunol. 65, 49–53.

    Article  PubMed  CAS  Google Scholar 

  • Rabin, B.S. (1999). Stress, Immune Function, and Health: The Connection. Wiley-Liss, Inc., New York.

    Google Scholar 

  • Rimaniol, A.-C., S. Haïk, M. Martin, R. Le Grand, F.D. Boussin, N. Dereuddre-Bosquet et al. (2000). Na+-dependent high-affinity glutamate transport in macrophages. J. Immunol. 164, 5430–5438.

    PubMed  CAS  Google Scholar 

  • Rimaniol, A.-C., P. Mialocq, P. Clayette, D. Dormont, and G. Gras (2001). Role of glutamate tarnsporters in the regulation of glutathione levels in human macrophages. Am. J. Physiol. 281, C1964–C1970.

    CAS  Google Scholar 

  • Rinner, I., P. Felsner, P. Liebmann, D. Hofer, A. Woelfler, A, Globerson et al. (1998a). Adrenergic/cholinergic immunomodulation in the rat model-in vivo veritas? Dev. Immunol. 6, 245–252.

    PubMed  CAS  Google Scholar 

  • Rinner, I., K. Kawashima, and K. Schauenstein (1998b). Rat lymphocytes produce and secrete acetylcholine in dependence of differentiation and activation. J. Neuroimmunol. 81, 31–37.

    Article  PubMed  CAS  Google Scholar 

  • Rinner, I., A. Globerson, L. Kawashima, W. Korsatko, and K. Schauenstein (1999). A possible role for acetylcholine in the dialogue between thymocytes and thymic stroma. Neuroimmunomodulation 6, 51–55.

    Article  PubMed  CAS  Google Scholar 

  • Romano, T.A., S.Y. Felten, J.A. Olschowka, and D.L. Felten (1994). Noradrenergic and peptidergic innervation of lymphoid organs in the beluga, Delphinapterus leucas: An anatomical link between the nervous and immune systems. J. Morphol. 221, 243–259.

    Article  PubMed  CAS  Google Scholar 

  • Roy, S. and H.H. Loh (1996). Effects of opioids on the immune system. Neurochem. Res. 21, 1375–1386.

    Article  PubMed  CAS  Google Scholar 

  • Schauenstein, K., R. Faessler, H. Dietrich, S. Schwarz, G. Kroemer and G. Wick (1987). Disturbed immune-endocrine communication in autoimmune diseases. Lack of corticosterone response to immune signals in Obese Strain chickens with spontaneous autoimmune thyroiditis. J. Immunol. 139, 1830–1833.

    PubMed  CAS  Google Scholar 

  • Schauenstein, K., P. Felsner, I. Rinner, P.M. Liebmann, J.R. Stevenson, J. Westermann et al. (2000). In vivo immunomodulation by peripheral adrenergic and cholinergic agonists/antagonists in rat and mouse models. Ann. N. Y. Acad. Sci. 917, 618–627.

    PubMed  CAS  Google Scholar 

  • Schorr, E.C. and B.G. Arnason (1999). Interactions between the sympathetic nervous system and the immune system. Brain Behav. Immun. 13, 271–278.

    Article  PubMed  CAS  Google Scholar 

  • Screpanti, I., D. Meco, S. Scarpa, S. Morrone, L. Frati, A. Gulino et al. (1992). Neuromodulatory loop mediated by nerve growth factor and interleukin-6 in thymic stromal cell cultures. Proc. Natl. Acad. Sci. USA 89, 3209–3212.

    Article  PubMed  CAS  Google Scholar 

  • Sommer, M.H., M.H. Xavier, M.B. Fialho, C.M. Wannmacher, and M. Wajner (1994). The influence of amino acids on mitogen-activated proliferation of human lymphocytes in vitro. Int. J. Immunopharmacol. 16, 865–872.

    Article  PubMed  CAS  Google Scholar 

  • Song, D.K., H.W. Suh, J.S. Jung, M.B. Wie, J.H. Song, and Y.H. Kim (1996). Involvement of NMDA receptor in the regulation of plasma interleukin-6 levels in mice. Eur. J. Pharmacol. 316, 165–169.

    Article  PubMed  CAS  Google Scholar 

  • Stefulj, J., B. Jernej, L. Cicin-Sain, I. Rinner and K. Schauenstein (2000). mRNA expression of serotonin receptors in cells of the immune tissues of the rat. Brain Behav. Immun. 14, 219–224.

    Article  PubMed  CAS  Google Scholar 

  • Stefulj, J., L. Cicin-Sain, K. Schauenstein, and B. Jernej (2001). Serotonin and immune response: Effect of the amine on in vitro proliferation of rat lymphocytes. Neuroimmunomodulation 9, 103–108.

    Article  PubMed  CAS  Google Scholar 

  • Sternberg, E.M., J.M. Hill, G.P. Chrousos, T. Kamilaris, S.J. Listwak, P.W. Gold et al. (1989a). Inflammatory mediator-induced hypothalamic-pituitary-adrenal axis activation is defective in streptococcal cell wall arthritis-susceptible Lewis rats. Proc. Natl. Acad. Sci. USA 86, 2374–2378.

    Article  PubMed  CAS  Google Scholar 

  • Sternberg, E.M., W.S. Young, R. Bernadini, A.E. Calogero, G.P. Chrousos, P.W. Gold et al. (1989b). A central nervous system defect in biosynthesis of corticotropin releasing hormone is associated with susceptibility to streptococcal cell wall-induced arthritis in Lewis rats. Proc. Natl. Acad. Sci. USA 86, 4771–4775.

    Article  PubMed  CAS  Google Scholar 

  • Sternberg, E.M. (2000). The Balance Within: The Science Connecting Health and Emotions. W.H. Freeman and Co., New York.

    Google Scholar 

  • Storto, M., U. de Grazia, G. Battaglia, M.P. Felli, M. Maroder, A. Gulino, et al. (2000). Expression of metabotropic glutamate receptors in murine thymocytes and thymic stromal cells. J. Neuroimmunol. 109, 112–120.

    Article  PubMed  CAS  Google Scholar 

  • Szaflarski, J., J. Ivacko, X.H. Liu, J.S. Warren, and F.S. Silverstein (1998). Excitotoxic injury induces monocyte chemoattractant protein-1 expression in neonatal rat brain. Mol. Brain Res. 55, 306–314.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe, H. and S. Bannai (1987). Induction of cystine transport activity in mouse peritoneal macrophages. J. Exp. Med. 165, 628–640.

    Article  PubMed  CAS  Google Scholar 

  • Watkins, A. (1997). Mind-Body Medicine. A Clinician’s Guide to Psychoneuroimmunology. Churchill Livingstone, New York.

    Google Scholar 

  • Weigent, D.A. and J.E. Blalock (1997). production of peptide hormones and neurotransmitters by the immune system. Chem. Immunol. 69, 1–30.

    PubMed  CAS  Google Scholar 

  • Westall, F.C., A. Hawkins, G.W. Ellison and L.W. Myers (1980). Abnormal glutamic acid metabolism in multiple sclerosis. J. Neurol. Sci. 47, 353–364.

    Article  PubMed  CAS  Google Scholar 

  • Westlund, K.N., Y.C. Sun, K.A. Sluka, P.M. Dougherty, L.S. Sorkin and W.D. Willis (1992). Neural changes in acute arthritis in monkeys. II. Increased glutamate immunoreactivity in the medial articular nerve. Brain Res. Rev. 17, 15–27.

    Article  PubMed  CAS  Google Scholar 

  • Whitlock, B.B., Y. Liu, S. Chang, P. Saini, B.K. Ha, T.W. Barrett et al. (1996). Initial characterization and autoradiographic localization of a novel sigma/opioid binding site in immune tissues. J. Neuroimmunol. 67, 83–96.

    Article  PubMed  CAS  Google Scholar 

  • Yatsushiro, S., H. Yamada, M. Hayashi, A. Yamamoto and Y. Moriyama (2000). Ionotropic glutamate receptors trigger microvesicle-mediated exocytosis of L-glutamate in rat pinealocytes. J. Neurochem. 75, 288–297.

    Article  PubMed  CAS  Google Scholar 

  • Zeev-Brann, A.B., O. Lazarov-Spiegler, T. Brenner, and M. Schwartz (1998). Differential effects of central and peripheral nerves on macrophages and microglia. Glia 23, 181–190.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic / Plenum Publishers, New York

About this chapter

Cite this chapter

Haas, H.S., Schauenstein, K. (2005). Neuroexcitatory Signaling in Immune Tissues. In: Gill, S., Pulido, O. (eds) Glutamate Receptors in Peripheral Tissue: Excitatory Transmission Outside the CNS. Springer, Boston, MA. https://doi.org/10.1007/0-306-48644-X_14

Download citation

Publish with us

Policies and ethics