Skip to main content

Reanalsis of Structures

  • Chapter
  • 288 Accesses

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 95))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kirsch, U. Combined approximations-a general reanalysis approach for structural optimization, Structural Optimization 20 (2000) 97–106.

    Google Scholar 

  2. Arora, J. S. Survey of structural reanalysis techniques, Journal of the Structural Division ASCE 102 (1976) 783–802.

    Google Scholar 

  3. Abu Kasim, A. M. and Topping, B. H. V. Static reanalysis: a review, Journal of the Structural Division ASCE 113 (1987) 1029–1045.

    Google Scholar 

  4. Barthelemy, J-F.M. and Haftka, R.T. Approximation concepts for optimum structural design-a review, Structural Optimization 5 (1993) 129–144.

    Article  Google Scholar 

  5. Sherman, J. and Morrison, W. J. Adjustment of an inverse matrix corresponding to changes in the elements of a given column or a given row of the original matrix, Ann. Math. Statist. 20 (1949) 621.

    Google Scholar 

  6. Woodbury, M. Inverting modified matrices, Memorandum Report 42 Statistical Research Group, Princeton University, Princeton, NJ, 1950.

    Google Scholar 

  7. Householder, A. S. A survey of some closed form methods for inverting matrices, SIAM J. 3 (1957) 155–169.

    MathSciNet  Google Scholar 

  8. Hager, W. W. Updating the inverse of a matrix, SIAM Review 31 (1989) 221–239.

    Article  MATH  MathSciNet  Google Scholar 

  9. Akgun, M. A. Garcelon, J. H. and Haftka, R. T. Fast exact linear and nonlinear structural reanalysis and the Sherman-Morrison-Woodbury formulas, International Journal for Numerical Methods in Engineering 50 (2001) 1587–1606.

    Google Scholar 

  10. Sack, R.L. Carpenter, W.C. and Hatch, G.L. Modification of elements in displacement method AIAA J. 5 (1967) 1708–1710.

    Google Scholar 

  11. Argyris, J.H. and Roy, J.R. General treatment of structural modifications, Journal of the Structural Division ASCE 98 (1972) 462–492.

    Google Scholar 

  12. Kirsch, U. Optimum Structural Design, McGraw Hill, New York, 1981.

    Google Scholar 

  13. Holnicki-Szulc, J. Structural Analysis Design and Ccontrol by the Virtual Distortion Method, Wiley, England, 1995.

    Google Scholar 

  14. Makode, P. V. Ramirez, M. R. and Corotis, R. B. Reanalysis of rigid frame structures by the virtual distortion method, Structural Optimization 11 (1996) 71–79.

    Article  Google Scholar 

  15. Majid, K. I. Optimum Design of Structures, Newnes-Butterworths, London, 1974.

    Google Scholar 

  16. Majid, K. I. Saka, M. P. and Celik, T. The theorem of structural variation generlized for rigidly jointed frames, Proceedings of the Institution of Civil Engineers 65 (1978) 839–856.

    Google Scholar 

  17. Topping. B. H. V. The application of the theorems of structural variation to finite element problems, Int. J. Num. Meth. Engrg. 19 (1983) 141–151.

    MATH  Google Scholar 

  18. Atrek, E. Theorems of structural variation: a simplification, Int. J. Num. Meth. Engrg. 21 (1985)481–485.

    MATH  Google Scholar 

  19. Topping. B. H. V. and Kassim, A. M. A. The use and the efficiency of the theorems of structural variation to finite element analysis, Int. J. Num. Meth. Engrg. 24 (1987) 1901–1920.

    Google Scholar 

  20. Saka M. P. Finite element applications of the theorems of structural variation, Computers and Structures 41 (1991) 519–530.

    MATH  Google Scholar 

  21. Kirsch, U. Structural Optimization, Fundamentals and Applications, Springer-Verlag, Berlin, 1993.

    Google Scholar 

  22. Fuchs, M. B. Linearized homogeneous constraints in structural design, Int. J. Mech. Sci. 22(1980) 333–400.

    Article  Google Scholar 

  23. Schmit, L. A. and Farshi, B. Some approximation concepts for structural synthesis, AIAA J. 11 (1974) 489–494.

    Google Scholar 

  24. Starnes, J. H. Jr. and Haftka, R.T. Preliminary design of composite wings for buckling stress and displacement constraints, J. Aircraft 16 (1979) 564–570.

    Google Scholar 

  25. Fleury, C. and Braibant, V. Structural optimization: a new dual method using mixed variables, Int. J. Num. Meth. Engrg. 23 (1986) 409–428.

    MathSciNet  Google Scholar 

  26. Svanberg, K. The method of moving asymptotes-a new method for structural optimization, Int. J. Num. Meth. Engrg. 24 (1987) 359–373.

    MATH  MathSciNet  Google Scholar 

  27. Fleury, C. Efficient approximation concepts using second-order information, Int. J. Num. Meth. Engrg. 28 (1989) 2041–2058.

    MATH  MathSciNet  Google Scholar 

  28. Fleury, C. First-and second-order convex approximation strategies in structural optimization, Structural Optimization 1 (1989) 3–10.

    Google Scholar 

  29. Haftka, R. T. Nachlas, J. A. Watson, L. T. Rizzo, T. and Desai, R. Two-point constraint approximation in structural optimization, Comp. Meth. Appl. Mech. Engrg. 60 (1989) 289–301.

    Google Scholar 

  30. Unal, R. Lepsch, R. Engelund, W. and Stanley, D. Approximation model building and multidisciplinary design optimization using response surface methods, Proc. 6th AIAA/NASA/ISSMO Symp. on Multidisciplinary analysis and optimization, Bellevue, WA, 1996.

    Google Scholar 

  31. Sobieszczanski-Sobieski, J. and Haftka, R. T. Multidisciplinary aerospace design optimization: survey and recent developments, Structural Optimization 14 (1997) 1–23.

    Article  Google Scholar 

  32. Fox, R.L. and Miura, H. An approximate analysis technique for design calculations, AIAA J. 9 (1971) 177–179.

    Google Scholar 

  33. Noor, A. K. Recent advances and applications of reduction methods, Appl. Mech. Rev. 47(1994) 125–146.

    Google Scholar 

  34. Kirsch, U. Approximate behavior models for optimum structural design, in New Directions in Optimum Structural Design, Edited by Atrek, E. et al, John Wiley &Sons, 1984.

    Google Scholar 

  35. Kirsch, U. and Toledano, G. Approximate reanalysis for modifications of structural geometry, Computers and Structures 16 (1983) 269–279.

    Google Scholar 

  36. Kirsch, U. Reduced basis approximations of structural displacements for optimal design, AIAA J. 29(1991) 1751–1758.

    MATH  Google Scholar 

  37. Kirsch, U. and Eisenberger, M. Approximate interactive design of large Structures, Computing Systems in Engineering, 2 (1991) 67–74.

    Article  Google Scholar 

  38. Kirsch, U. Approximate reanalysis methods, in Structural Optimization: Status and Promise, Edited by M.P. Kamat, AIAA, 1993.

    Google Scholar 

  39. Kirsch, U. Efficient reanalysis for topological optimization, Structural Optimization 6 (1993) 143–150.

    Article  Google Scholar 

  40. Kirsch, U. Improved stiffness-based first-order approximations for structural optimization, AIAA J. 33 (1995) 143–150.

    MATH  Google Scholar 

  41. Kirsch, U. and Liu S. Exact structural reanalysis by a first-order reduced basis approach, Structural Optimization 10 (1995) 153–158.

    Article  Google Scholar 

  42. Kirsch, U. and Liu, S. Structural reanalysis for general layout modifications, AIAA J. 35 (1997) 382–388.

    Google Scholar 

  43. Chen, S. Huang, C. and Liu, Z. Structural approximate reanalysis for topological modifications by finite element systems, AIAA J. 36 (1998) 1760–1762.

    Google Scholar 

  44. Kirsch, U. and Papalambros, P.Y. Structural reanalysis for topological modifications, Structural Optimization, 21 (2001) 333–344.

    Google Scholar 

  45. Kirsch, U. and Papalambros, P.Y. Exact and accurate reanalysis of structures for geometrical changes, Engineering with Computers (to be published 2001).

    Google Scholar 

  46. Kirsch, U. and Moses, F. An improved reanalysis method for grillage-type structures, Computers and Structures 68 (1998) 79–88.

    Article  Google Scholar 

  47. Aktas, A. and Moses, F. Reduced basis eigenvalue solutions for damaged structures, Mechanics of Structures and Machines 26 (1998) 63–79.

    Google Scholar 

  48. Kirsch, U. and Moses, F. Effective reanalysis for damaged structures, in ASCE Publication on Case Studies in Optimal Design Edited by D.M. Frangopol, 1999.

    Google Scholar 

  49. Kirsch, U. Effective sensitivity analysis for structural optimization, Computer Methods in Applied Mechanics and Engineering 117 (1994) 143–156.

    Article  MATH  Google Scholar 

  50. Kirsch, U. and Papalambros, P. Y. Accurate displacement derivatives for structural optimization using approximate reanalysis, Computer Methods in Applied Mechanics and Engineering, 190 (2001) 3945–3956.

    Article  Google Scholar 

  51. Leu, L-J. and Huang, C-W. A reduced basis method for geometric nonlinear analysis of structures, IASS J. 39 (1998) 71–75.

    Google Scholar 

  52. Kirsch, U. Efficient-accurate reanalysis for structural optimization, AIAA Journal 37 (1999) 1663–1669.

    Google Scholar 

  53. Chen, S.H. and Yang, X.W. Extended Kirsch combined method for eigenvalue reanalysis, AIAA J. 38 (2000) 927–930.

    Google Scholar 

  54. Chen, S.H. Yang, X.W. and Lian, H.D. Comparison of several eigenvalue reanalysis methods for modified structures, Structural Optimization 20 (2000) 253–259.

    Google Scholar 

  55. Kirsch, U. and Papalambros, P.Y. Exact and accurate Solutions in the approximate reanalysis of structures, AIAA J. (to be published 2001).

    Google Scholar 

  56. Kirsch, U. Kocvara, M. and Zowe, J. Accurate reanalysis of structures by a preconditioned conjugate gradient method, Int. J. Num. Meth. Engrg. (to be published 2002).

    Google Scholar 

  57. Garcelon, J. H. Haftka R. T. and Scotti, S. J. Approximations in optimization of damage tolerant structures, AIAA J. 38 (2000) 517–524.

    Google Scholar 

  58. Heiserer, D. and Baier, H. Applied reanalysis techniques for large scale structural mechanics multidisciplinary optimization in automotive industry, presented at the Fourth World Congress of Structural and multidisciplinary optimization, Dalian, China, 2001.

    Google Scholar 

  59. Ramaswamy, B. Nikolaidis, E. Keerti, A. and Kirsch, U. Reliability Analysis of Systems with Progressive Failure Modes Using Reduced Basis Approximations, presented at the 6th U.S. National Congress on Computational Mechanics, Dearborn, Michigan, 2001.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2004). Reanalsis of Structures. In: Design-Oriented Analysis of Structures. Solid Mechanics and Its Applications, vol 95. Springer, Dordrecht. https://doi.org/10.1007/0-306-48631-8_3

Download citation

  • DOI: https://doi.org/10.1007/0-306-48631-8_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0443-8

  • Online ISBN: 978-0-306-48631-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics