Advertisement

Tumors in Mammals and Non-mammalian Classes of Vertebrates

Keywords

Multicellular Organism Trophoblast Cell Chemical Carcinogen Tumor Immunity Bony Fish 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alford R.A., Richards J.S. (1999). “Global Amphibian Declines: A Problem in Applied Ecology”. Annu Rev Ecol Syst. 30:133–165.CrossRefGoogle Scholar
  2. Anisimov V.N. (2003). Ageing and cancer in transgenic and mutant mice. Front Biosci. 1:s883–902.CrossRefGoogle Scholar
  3. Arck P.C., Hertwig E., Hagen M. et al. (2000). Pregnancy as a Model of Controlled Invasion Might Be Attributed to the Ratio of CD3:CD8 to CD56. Am J Reprod Immunol. 44:1–8.PubMedCrossRefGoogle Scholar
  4. Bailey G.S., Williams D.E., Hendricks J.D. (1996). Fish models for environmental carcinogenesis: the rainbow trout. Envir Health Perspec. 104:5–21.CrossRefGoogle Scholar
  5. Balls M., Ruben L.N. (1964). A review of chemical induction of neoplasms in Amphibia. Experientia. 20:241–247.PubMedCrossRefGoogle Scholar
  6. Baumann P.C., Harshbarger J.C., Hartman K.J. (1990). Relationship between liver tumors and age in brown bullhead populations from two Lake Erie tributaries. Sci’ Total Environ. 94:71–87.CrossRefGoogle Scholar
  7. Bell S.C., Billington W.D. (1986). Humoral immune response in murine pregnancy. V. Relationship to the differential immunogenicity of placental and fetal tissues. J Reprod Immunol. 9:289–295.PubMedCrossRefGoogle Scholar
  8. Bodine A.B., Luer C.A., Gangjee S. (1985). A comparative study of monooxygenase activity in elasmobranchs and mammals: activation of the model pro-carcinogen aflatoxin Bl by liver preparations of calf, nurse shark and clearnose skate. Comp Biochem Physiol. 82:255–257.Google Scholar
  9. Bodine A.B., Luer C.A., Gangjee S.A. (1989). In vitro metabolism of the pro-carcinogen aflatoxin Bl by liver preparations of the calf, nurse shark and clearnose skate. Comp Biochem Physiol. 94:447–453.Google Scholar
  10. Boyse E.A., Old L.J. (1969). Some aspects of normal and abnormal cell surface genetics. Annu Rev Genet. 3:269–290.CrossRefGoogle Scholar
  11. Bremermann H.J. (1987). The adaptive significance of sexuality. Experientia Suppl. 55:135–161.PubMedGoogle Scholar
  12. Brichard V., Van Pel A., Wolfel T. et al. (1993). The tyrosinase gene codes for an antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. J Exp Med. 178:489–495.PubMedCrossRefGoogle Scholar
  13. Brown D.W., Collins W.M., Zsigray R.M. et al. (1984). A non-MHC genetic influence on response to Rous sarcoma virus-induced tumors in chickens. Avian Dis. 28:884–899.PubMedCrossRefGoogle Scholar
  14. Bubanovic I. (2003a). Origin of Anti-tumor Immunity Failure in Mammals and new Possibility for Immunotherapy. Med Hypotheses. 60:152–158.PubMedCrossRefGoogle Scholar
  15. Bubanovic I., (2003b). Failure of blood-thymus barrier as a mechanism of tumor and trophoblast escape. Med Hypotheses. 60:315–320.PubMedCrossRefGoogle Scholar
  16. Bubanovic I. (2003c). Crossroads of extrathymic lymphocytes maturation pathways. Med Hypotheses. 612:235–239.CrossRefGoogle Scholar
  17. Bubanovic I., Najman S. (2003d). Failure of Anti-tumor Immunity in Mammals — Evolution of the Hypothesis. The 23rd Annual Meeting of the American Society for Reproductive Immunology. New Haven, Connecticut, USA. June 18–22. Am J Reprod Immunol. 49:329–372, Abstract N° 49; p.:351.CrossRefGoogle Scholar
  18. Bubanovic I., Najman S. (2004). Anti-tumor Immunity Failure in Mammals — Evolution of the Hypothesis. Acta Biotheor. 52:57–64.PubMedCrossRefGoogle Scholar
  19. Bulmer J.N. (1992). Immune aspects of pathology of the placental bed contributing to pregnancy pathology. Baillieres Clin Obstet Gynaecol. 6:461–488.PubMedCrossRefGoogle Scholar
  20. Bystryn J.C., Rigel D., Friedman R.J. et al. (1987). Prognostic significance of hypopigmentation in malignant melanoma. Arch Dermatol. 123:1053–1055.PubMedCrossRefGoogle Scholar
  21. Cabrera T., Angustias Fernandez M., Sierra A. et al. (1996). High frequency of altered HLA class I in invasive breast carcinomas. Human Immunol. 50:127–134.CrossRefGoogle Scholar
  22. Chaux P., Moutet M., Faivre J. et al. (1996). Inflammatory cells infiltrating human colorectal carcinoma express HLA class II but not B7-1 and B7-2 costimulatory molecules of the T-cell activation. Lab Invest. 74:975–983.PubMedGoogle Scholar
  23. Cherezov A.E. (1997). General theory of cancer. Tissue approach. Publishing House of Moscow University, Moscow, pp.:85–90.Google Scholar
  24. Churchill A.E., Biggs P.M. (1967). Agent of Marek’s disease in tissue culture. Nature. 215:528–530.PubMedCrossRefGoogle Scholar
  25. Clark D.A. (1991). Controversies in reproductive immunology. Crit Rev Immunol. 11:215–247.PubMedGoogle Scholar
  26. Clynes R., Takechi Y., Moroi Y. (1998). Fc receptors are required in passive and active immunity to melanoma. Proc Natl Acad Sci USA. 95:652–656.PubMedCrossRefGoogle Scholar
  27. Cohnheim J. (1882). Vorlesungen uber allgemeine Pathologie. Berlin.Google Scholar
  28. Collins W.M., Briles W.E., Zsigray R.M. et al. (1977). The B locus (MHC) in the chicken: association with the fate of RSV-induced tumors, Immunogen. 5:333–343.CrossRefGoogle Scholar
  29. Collins W.M., Brown D.W., Ward P.H. et al. (1985). MHC and non-MHC genetic influences on Rous sarcoma metastasis in chickens, Immunogen. 22:315–321.CrossRefGoogle Scholar
  30. Conroy S.E., Latchman D.S. (1996). Do heat shock proteins have a role in breast cancer? Br J Cancer. 74:717–721.PubMedGoogle Scholar
  31. Cowan D.F. (1968). Diseases of captive reptiles. J Am Vet Med Ass. 153: 848–859.Google Scholar
  32. Croitoru K., Carding S.R., Clark D.A (1999). Murine T cell determination of pregnancy outcome II. Distinct TH1 and TH2/3 populations of VγI+δ6+ T cells determine success or failure of pregnancy in CBA:JxDBA:2J matings. Cell Immunol. 196:71–79.PubMedCrossRefGoogle Scholar
  33. Cui Z.Z., Lee L.F., Liu J.L. et al. (1991). Structural analysis and transcriptional mapping of the Marek’s disease virus gene encoding pp38, an antigen associated with transformed cells. J Virol. 65:6509–6515.PubMedGoogle Scholar
  34. Curtis L.R., Zhang Q., Ezahr C. et al. (1995). Temperature modulated incidence of aflatoxin Bl initiated liver cancer in rainbow trout. Fund Applied Toxicol. 25:146–153.CrossRefGoogle Scholar
  35. Dall’Ara P. (2003). Immune system and ageing in the dog: possible consequences and control strategies. Vet Res Commun. 27:535–542.Google Scholar
  36. Dawe C.J. (1990). Implications of aquatic animal health for human health. Envir Health Perspec. 86:245–255.CrossRefGoogle Scholar
  37. Dornburg R. (2003). The history and principles of retroviral vectors. Front Biosci. 8:818–835.CrossRefGoogle Scholar
  38. Down N.E., Peter R.E., Leatherland J.F. (1990). Seasonal changes in serum gonadotropin, testosterone, 11-ketotestosterone, and cstradiol-17β levels and their relation to tumor burden in gonadal tumor-bearing carp X goldfish hybrids in the Great Lakes. Gen Comp Endocrin. 77:192–201.CrossRefGoogle Scholar
  39. Effron M, Griner L., Benirschke K. (1977). Nature and rate of neoplasia found in captive wild mammals, birds, and reptiles at necropsy. J Natl Cancer Inst. 59:185–198.PubMedGoogle Scholar
  40. Egami N., Kyono-Hamaguchi Y., Mitani H. et al. (1981). Characteristics of hepatoma produced by treatment with diethylnitrosamine in the fish (Oryzias latipes). In: Harshbarger J.C., Kondo C.J., Sugimura T. et al. Phyletic Approaches to Cancer. Japan Scientific Press, Tokyo, pp. 217–226.Google Scholar
  41. Enders A.C. (1991). Current topic: structural responses of the primate endometrium to implantation. Placenta. 12:309–325.PubMedCrossRefGoogle Scholar
  42. Etoh H., Hyoda-Taguchi Y., Aoki K. et al. (1983). Incidence of chromatoblastomas in aging goldfish (Carassius auratus). J Nat Canc Inst. 70:523–528.Google Scholar
  43. Faisal M., Marzouk M.S., Smith C.L. et al. (1991). Mitogen induced proliferative responses of lymphocytes from spot (Leiostomus xanthurus) exposed to polycyclic aromatic hydrocarbon contaminated environments. Immunopharmacol Immunotoxicol. 13:311–327.PubMedCrossRefGoogle Scholar
  44. Fathalla M.F. (1971). Incessant ovulation-a factor in ovarian neoplasia? Lancet. 2:163–164.PubMedCrossRefGoogle Scholar
  45. Fitzgerald T.K. (1995). Reptiles and Cancer. Cold Blooded News. 22:18–21.Google Scholar
  46. Forbes N.A., Cooper J.E., Higgins R. (2000). Neoplasms of Birds of Prey. In: Lumeij JS, Lierz M, Remple D, Cooper JE (eds). Raptor Biomedicine III. Lake Worth, Florida: Zoological Education Network, pp.: 127–146.Google Scholar
  47. Fredrickson T.N., (1987). Ovarian tumors of the hen. Environ Health Perspect. 73:35–51.PubMedCrossRefGoogle Scholar
  48. Frye F. (1991). Biomedical and Surgical Aspects of Captive Reptile Husbandry, 2nd ed. Malabar, FL, Krieger Publishing Co.Google Scholar
  49. Frye F.L., Carney J. (1975). Parathyroid adenoma in a tortoise. Vet Med/Small Anim Clin. 20:582–584.Google Scholar
  50. Garner M., (2001). Gross Pathology of Zoo Animals. C.L. Davis DVM Foundation Armed Forces Institute of Pathology. Washington, DC.Google Scholar
  51. Geertsen R.C., Hofbauer G.F., Yue F.Y. et al., (1998). Higher frequency of selective losses of HLA-A and HLA-B allospecificities in metastasis than in primary melanoma lesions. J Invest Dermatol. 111:497–502.PubMedCrossRefGoogle Scholar
  52. Getchell R.G., Casey J.W. Bowser P.R. (1998). Seasonal occurrence of virally induced skin tumors in wild fish. J Aqu Anim Health. 10:191–201.CrossRefGoogle Scholar
  53. Gilmour D.G., Collins W.M., Fredricksen T.L. et al. (1986). Genetic interaction between non-MHC T-and B-cell alloantigens in response to Rous sarcomas in chickens. Immunogen. 23:1–6.CrossRefGoogle Scholar
  54. Gonda T.J., Sheiness D.K., Bishop J.M. (1982). Transcripts from the cellular homologs of relroviral oncogenes: distribution among chicken tissues. Mol Cell Biol. 2:617–624.PubMedGoogle Scholar
  55. Gould W.J., O’Connell P.H., Shivaprasad H.L et al. (1993). Detection of retrovirus sequences in budgerigars with tumours. Avian Pathol. 22:33–45.CrossRefPubMedGoogle Scholar
  56. Govallo V.I. (1983). Paradoxes of immunology. Znaniye, Moscow. pp.:51–68.Google Scholar
  57. Govallo V.I. (1996). Immunoembryotherapy. In: Transplantation of human foetal tissues and organs. Meditsina, Moscow, pp.:14–18.Google Scholar
  58. Gregory R.C., Latimer K.S., Hamer S. et al. (2000). Undifferentiated Sarcoma in a Surinam Toad (Pipa pipa). Proceedings of International Virtual Conferences in Veterinary Medicine.Google Scholar
  59. Grizzle J.M., Horowitz S.A., Strength D.R. et al. (1988). Caged fish as monitors of population: Effects of chlorinated effluent from a wastewater treatment plant. Water Resource Bullten. 24:951–959.Google Scholar
  60. Harada T., Hatnanaka J., Kubota S.S. et al. (1990). Lymphoblastic lymphoma in medaka (Oryzias latipes). J Fish Dis. 13:169–173.CrossRefGoogle Scholar
  61. Harshbarger J.C. (1974). Activities Report Registry of Tumors in Lower Animals, 1965–1973. RTLA 1385. Smithsonian Institution Press, Washington, D.C.Google Scholar
  62. Harshbarger J.C., (1977). Role of the registry of tumors in lower animals in the study of environmental carcinogenesis in aquatic animals. Ann New York Acad Sci. 298:280–289.CrossRefGoogle Scholar
  63. Harshbarger J.C., Charles A.M., Spero P.M. (1981). Collection and analysis of neoplasm in sub-homoeothermic animals from a phyletic point of view. In: Harshbarger J.C., Kondo C.J., Sugimura T. et al. Phyletic Approaches to Cancer. Japan Scientific Press, Tokyo, pp. 357–384.Google Scholar
  64. Harshbarger J.C. (1984). Pseudoneoplasms in ectothermic animals. Natl Cancer Inst Monogr. 65:251–273.PubMedGoogle Scholar
  65. Harshbarger J.C., Clark J.B. (1990). Epizootiology of neoplasms in bony fish of North America. Sci Total Environ. 94:1–32.PubMedCrossRefGoogle Scholar
  66. Harshbarger J.C. (1996). Comparative oncology. Jpn J Cancer Res. 87:1–6.Google Scholar
  67. Hart R.W., Setlow R.B., Woodhead A.D. (1977). Evidence that pyrimidine dimers in DNA can give rise to tumors. Proc Natl Acad Sci USA. 74:5574–5578.PubMedCrossRefGoogle Scholar
  68. Hartwell L.H., Weinert T.A. (1989). Checkpoints: controls that ensure the order of cell cycle events. Science. 246:629–634.PubMedCrossRefGoogle Scholar
  69. Hayes M.A., Smith R.I. (1989). Neoplasia in Fish. In: Ferguson H.W. Systemic Pathology of Fish. Iowa State University Press. Ames, Iowa, pp.:230–247.Google Scholar
  70. Hendricks J.D., Sinhuber R.O., Loveland P.M. et al. (1980). Hepatocarcinogenicity of glandless cottonseeds and cottonseed oil to rainbow trout (Salmo gairdnerii). Science. 208:309–311.PubMedCrossRefGoogle Scholar
  71. Hedrick R.P., McDowell T., Eaton W.D. et al. (1987). Serological relationships of five herpesviruses isolated from salmonid fishes. J Appl Icht. 3:87–92.CrossRefGoogle Scholar
  72. Ho H.N., Chao K.H., Chen C.K. et al. (1996). Activation status of T and NK cells in the endometrium throughout menstrual cycle and normal and abnormal early pregnancy. Hum Immunol. 49:130–136.PubMedCrossRefGoogle Scholar
  73. Hosel M., Webb D., Schroer J. et al. (2003). The abortive infection of Syrian hamster cells with human adenovirus type 12. Curr Top Microbiol Immunol. 272:415–440.PubMedGoogle Scholar
  74. Houghton A.N., Eisinger M., Albino A.P. et al. (1982). Surface antigens of melanocytes and melanomas. Markers of melanocyte differentiation and melanoma subsets. J Exp Med. 156:1755–1766.PubMedCrossRefGoogle Scholar
  75. Houghton A.N. (1994). Cancer antigens: immune recognition of self and altered self. J Exp Med. 180:1–4.PubMedCrossRefGoogle Scholar
  76. Hughes A.L., Nei M. (1993). Evolutionary relationships of the classes of MHC genes. Immunogen. 37:337–342.CrossRefGoogle Scholar
  77. Hunt S., Miller L., Platt S. (1998). Hormonal regulation of uterine macrophages. Deo Immunol. 6:105–110.CrossRefGoogle Scholar
  78. Hutter H., Hammer A., Dohr G. et al. (1998). HLA expression at the maternal-fetal interface. Dev Immunol. 6:197–204.PubMedCrossRefGoogle Scholar
  79. Hchmann G, Bergmann V. (1975). Histological and electron microscopy studies on the adenocarcinomatosis of laying hens. Arch Exp Veterinarmed. 29:897–907.Google Scholar
  80. Jacobson E.R., Seely J.C., Novilla M.N. (1980). Lymphosarcoma associated with virus-like intranuclear inclusions in a California king snake (Colubridae:Lampropettis). J Natl Cancer Inst. 65:577–583.PubMedGoogle Scholar
  81. Jacobson E.R. (1981a). Neoplastic diseases of reptiles. In: Cooper J.E., Jackson O.F. (eds): Diseases of the Reptilia. London, Academic Press, pp.: 429–468.Google Scholar
  82. Jacobson E.R., Calderwood M.B., French T.W. et al. (1981b) Lymphosarcoma in an eastern king snake and a rhinoceros viper. J Am Vet Med Assoc. 179:1231–1235.PubMedGoogle Scholar
  83. Jäer D., Jäger E., Knuth A. (2001). Immune responses to tumor antigens: implications for antigen specific immunotherapy of cancer. J Clin Pathol. 54:669–674.Google Scholar
  84. Jhappan C., Noonan F.P., Merlino G. (2003). Ultraviolet radiation and cutaneous malignant melanoma. Oncogene. 22:3099–3112.PubMedCrossRefGoogle Scholar
  85. Jones D., Lee L., Liu J.L. et al. (1992). Marek disease virus encodes a basic-leucine zipper gene resembling the fos/jun oncogenes that is highly expressed in lymphoblastoid tumors. Proc Natl Acad Sci USA. 89:4042–4046.PubMedCrossRefGoogle Scholar
  86. Kaiser H.E. (1989). Comparative Aspects of Tumor Development. Kluwer Academic Publishers, Dordrecht, Netherlands. pp.:48–54.Google Scholar
  87. Kasahara M., Hayashi M., Tanaka K., et al. (1996). Chromosomal localization of the proteasome Z subunit gene reveals an ancient chromosomal duplication involving the major histocompatibility complex. Proc Nat Acad Sci USA. 93:9096–9101.PubMedCrossRefGoogle Scholar
  88. Kasahara M., Nakaya J., Satta, Y. et al. (1997). Chromosomal duplication and the emergence of the adaptive immune system. Trend Gen. 13:90–92.CrossRefGoogle Scholar
  89. Kaufman J., Wallny H.J. (1996). Chicken MHC molecules, disease resistance and the evolutionary origin of birds. Cur Top Microbiol Immunol. 212:129–141.Google Scholar
  90. Kent M.L., Dawe S.C. (1990). et al. Experimental transmission of a plasmacytoid leukemia of chinook salmon, Oncorhynchus tshawytscha. Cancer Res. 50:5679–5681.Google Scholar
  91. Kieser D., Kent M.L., Groff J.M. et al. (1991). An epizootic of an epitheliotropic lymphoblastic lymphoma in coho salmon Oncorhynchus kisutch. Dis Aqu Org. 11:1–8.CrossRefGoogle Scholar
  92. King A., Hiby S.E., Verma S. et al. (1997). Uterine NK cells and trophoblast HLA class I molecules. Am J Reprod Immunol. 37:459–62.PubMedGoogle Scholar
  93. King A., Loke Y.W. (1991). On the nature and function of human uterine granular lymphocytes. Immunol Today. 12:432–435.PubMedCrossRefGoogle Scholar
  94. Kovats S., Main E.K., Librach C. et al. (1990). A class I antigen, HLA-G, expressed in human trophoblasts. Science. 248:220–223.PubMedCrossRefGoogle Scholar
  95. Krebs E.T. Jr., Krebs E.T., Beard H.H. (1950). He trophoblastic thesis of malignancy. Medical Record. 163:148–170.Google Scholar
  96. Krebs E.T. Jr., (1993). The Letter. Townsend Letter for Doctors, pp. 175.Google Scholar
  97. Lachapelle M.H., Miron P., Hemmings R. et al. (1996). Endometrial T, B, and NK cells in patients with recurrent spontaneous abortion. Altered profile and pregnancy outcome. J Immunol. 15:4027–4034.Google Scholar
  98. Laiho M., Latonen L. (2003). Cell cycle control, DNA damage checkpoints and cancer. Ann Med. 35:391–397.PubMedCrossRefGoogle Scholar
  99. Laurens N.R. (1997). Cancer resistance in amphibia. Dev Com Immunol. 21:102–106.Google Scholar
  100. Lawlor D.A., Zemmour J., Ennis P.D., et al., (1990). Evolution of class-I MHC genes and proteins: from natural selection to thymic selection. An Rev Immunol. 8:23–29.CrossRefGoogle Scholar
  101. Lea R.G., Underwood J., Flanders K.C. et al. (1995). A subset of patients with recurrent spontaneous abortion is deficient in TGFβ-2-producing’ suppressor cells’ in uterine tissue near the placental attachment site. Am J Reprod Immunol. 34:52–64.PubMedGoogle Scholar
  102. Lentz M.R. (1990). The phytogeny of oncology. Mol Biother. 2:137–144.PubMedCrossRefGoogle Scholar
  103. Lentz M.R. (1999). The Role of Therapeutic Apheresis in the Treatment of Cancer. Therapeutic Apheresis. 3:40–49.PubMedCrossRefGoogle Scholar
  104. Letcher J. (1992). Intracoelomic use of tricaine methanesulfonate for anesthesia of bullfrogs (Rana catesbeiana) and leopard frogs (Rana pipiens). Zoo Biology. 11:243–251.CrossRefGoogle Scholar
  105. Lin H., Mosmann T.R., Guilbert L. et al, (1993). Synthesis of T helper 2 type cytokines at the maternal-fetal interface. J Immunol. 151:4562–4573.PubMedGoogle Scholar
  106. Lucke’ B. (1942). Tumors of the nerve sheaths in fish of the snapper family (Lutianidae). Arch Pathol 34:133–150.Google Scholar
  107. Lunger P.D., Hardy W.D., Clark H.F. (1974). C-type particles in a reptilian tumor. J Natl Cancer Inst. 52:1231–1235.PubMedGoogle Scholar
  108. Maccubbin, A.E., N. Ersing. (1991). Tumors in fish from the Detroit River. Hydrobiol. 219:301–306.Google Scholar
  109. Malitschek B., Fornzler D., Shartl M. (1995). Melanoma formation in Xiphophorus: a model system for the role of receptor tyrosine kinases in tumorogmesis. Bio Essays. 17:1017–1023.Google Scholar
  110. Malumbres M., Camera A. (2003). Cell cycle deregulation: a common motif in cancer. Prog Cell Cycle Res. 5:5–18.PubMedGoogle Scholar
  111. Marx L., Arck P., Kapp M. et al. (1999a). Leukocyte populationshormone receptors and apoptosis in eutopic and ectopic first trimester human pregnancies. Hum Reprod. 14:1111–1117.PubMedCrossRefGoogle Scholar
  112. Marx L., Arck P., Kieslich C. et al. (1999b). Decidual mast cells might be involved in the onset of human first trimester abortion. Am J Reprod Immunol. 41:34–40.PubMedGoogle Scholar
  113. Marzusch K., Buchholz F., Ruck P. et al. (1977). IL-12 and IL-2-stimulated release of IFN-γ by uterine CD56 ++ large granular lymphocytes is amplified by decidual macrophages. Hum Reprod. 12:921–924.CrossRefGoogle Scholar
  114. Masahito P., Ishikawa T., Okamoto N. et al. (1985). Nephoroblastoma in the Japanese eel, Anguilla japonica Temminck and Schlegel. Canc Res. 52:2575–2579.Google Scholar
  115. Medarova Z., Elwood B.W., Taylor L.T. Jr. (2002). Alloantigen System L Affects the Outcome of Rous Sarcomas. Exp Biol Med. 227:158–163.Google Scholar
  116. Mikkers H., Berns A. (2003). Retroviral insertional mutagenesis: tagging cancer pathways. Adv Cancer Res. 88:53–99.PubMedCrossRefGoogle Scholar
  117. Mitsumori K. (2002). Evaluation on carcinogenicity of chemicals using transgenic mice. Toxicology. 27:241–244.CrossRefGoogle Scholar
  118. Mosmann T.R., Cherwinski H., Bond M.W. et al. (1986). Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol. 136:2348–2357.PubMedGoogle Scholar
  119. Naftzger C., Takechi K., Kohda H. et al. (1996). Immune response to a differentiation antigen induced by altered antigen: a study of tumor rejection and autoimmunity. Proc Natl Acad Sci USA. 93:14809–14814.PubMedCrossRefGoogle Scholar
  120. Nazerian K., Solomon J.J., Witter R.L. et al. (1968). Studies on the etiology of Marek’s disease. II. Finding of a herpesvirus in cell culture. Proc Soc Exp Biol Med. 127:177–182.PubMedGoogle Scholar
  121. Nunez O., Hendricks J.D., Arbogast D.N. et al. (1989). Promotion of aflatoxin Bl hepatocarcionogenesis in rainbow trout (Oncorhynchus mykiss). Toxicol Pathol. 19:11–23.Google Scholar
  122. O’Regan M.N., Parsons K.R., Tregaskes C.A. et al. (1999). A chicken homologue of the co-stimulating molecule CD80 which binds to mammalian CTLA-4. Immunogen. 49:68–71.Google Scholar
  123. Orós J., Torrent A., Espinosa de los Monteros A. (2001). Multicentric Lymphoblastic Lymphoma in a Loggerhead Sea Turtle (Caretta caretta). Vet Pathol. 38:464–467.PubMedCrossRefGoogle Scholar
  124. Ovcrwijk W.W., Lee D.S., Surman D.R. et al. (1999). Vaccination with a recombinant vaccinia virus encoding a “self” antigen induces autoimmune vitiligo and tumor cell destruction in mice: requirement for CD4 + T lymphocytes. Proc Natl Acad Sci USA. 96:2982–2987.CrossRefGoogle Scholar
  125. Palo J., Duchesne J., Wikstrom J. (1977). Malignant diseases among patients with multiple sclerosis. J Neurol. 216:217–222.PubMedCrossRefGoogle Scholar
  126. Paul P., Rouas-Freiss N., Khalil-Daher I. et al. (1998). HLA-G expression in melanoma: A way for tumor cells to escape from immunosurveillance. Proc Nat Acad Sci USA. 95:4510–4515.PubMedCrossRefGoogle Scholar
  127. Paul R., Remes K., Lakkala T. et al. (1994). Spontaneous remission in acute myeloid leukaemia. Br J Haematol. 86:210–212.PubMedCrossRefGoogle Scholar
  128. Paulesu L. (1997). Cytokines in mammalian reproduction and speculation about their possible involvement in nonmammalian viviparity. Micros Res Tech. 38:188–194.CrossRefGoogle Scholar
  129. Payne L.N., Gillespie A.M., Howes K. (1992). Myeloid leukaemogenicity and transmission of the HPRS-103 strain of avian leukosis virus. Leukemia. 6:1167–1176.PubMedGoogle Scholar
  130. Perlmutter A., Potter H. (1988). Hyperthermic suppression of a genetically programmed melanoma in hybrids of fishes: genus Xiphophorus. J Can Res Clin Oncol. 114:359–362.CrossRefGoogle Scholar
  131. Pfeiffer C.J., Nagai T., Fujimura M. et al. (1979). Spontaneous regressive epitheliomas in the Japanese newt, Cynops pyrrhogaster. Canc Res. 39:1904–1910.Google Scholar
  132. Raghupathy R. (1997). Th1 type immunity is incompatible with successful pregnancy. Immunol Today. 18:478–482.PubMedCrossRefGoogle Scholar
  133. Rast J.P., Anderson M.K., Strong S.J. (1997). α, β, γ, and δ T cell antigen receptor genes arose early in vertebrate phylogeny. Immunity. 6:1–11.PubMedCrossRefGoogle Scholar
  134. Reboul J., Gardiner K., Monneron D. et al. (1999). Comparative genomic analysis of the IFN/IL-10 receptor gene cluster. Gen Res. 9:242–250.Google Scholar
  135. Reece R.L. (1992). Observations on naturally occurring neoplasms in birds in the state of Victoria, Australia. Avian Pathol. 21:3–32.CrossRefPubMedGoogle Scholar
  136. Robert J., Guiet C., Du Pasquier L. (1995). Ontogeny of the alloimmune response against a transplanted tumor in Xenopus laevis. Differentiation. 59:135–139.PubMedCrossRefGoogle Scholar
  137. Robert J., Cohen N. (1999). Evolution of immune surveillance and tumor immunity: studies in Xenopus. Immunol Rev. 166:231–243.CrossRefGoogle Scholar
  138. Romagnani S., Parronchi P., D’Elios M.M. et al. (1997). An update on human Th1 and Th2 cells. Int Arch Allergy Immunol. 113:153–156.PubMedCrossRefGoogle Scholar
  139. Romagnano A., Jacobson E.R., Boon G.D. et al (1996). Lymphosarcoma in a green iguana (Iguana iguana). J Zoo Wildl Med. 27:83–89.Google Scholar
  140. Rosen P., Woodhead A.D. (1980). High ionic strength: its significance in immunosurveillance against tumor cells in sharks and rays (elasmobranchs). Med Hypotheses. 6:441–446.PubMedCrossRefGoogle Scholar
  141. Rosenberg S.A., White D.E. (1996). Vitiligo in patients with melanoma: normal tissue antigens can be targets for cancer immunotherapy. J Immunother Emphasis Tumor Immunol. 19:81–84.PubMedGoogle Scholar
  142. Ruben L.N., Edwards B.F., Risting J. (1977). Temperature and variation of the function of complement and antibody of Amphibia. Experientia. 33:1522–1523.CrossRefGoogle Scholar
  143. Ruben N.L., Clothier H.R., Balls M. et al. (1997). Cancer resisitance in amphibia. Dev Comp Immunol. 21:102–102.CrossRefGoogle Scholar
  144. Rubin H. (2001). Selected Cell and Selective Microenvironment in Neoplastic Development. Canc Res. 61:799–807.Google Scholar
  145. Ruddle F.H. (1973). Parasexual approaches to mammalian gene regulation. Harvey Lect. 69:103–124.PubMedGoogle Scholar
  146. Ruddon W.R. (1995). Cancer Biology. Third edition. Oxford University Press. New York-Oxford.Google Scholar
  147. Sakai C., Kawakami Y., Law L.W. et al. (1997). Melanosomal proteins as melanoma-specific immune targets. Melanoma Res. 7:83–95.PubMedCrossRefGoogle Scholar
  148. Salih H.R., Nussler V. (2001). Immune escape versus tumour tolerance: how do rumours evade immune surveillance? Eur J Med Res. 27: 323–332.Google Scholar
  149. Schierman L.W., Watanabe D.H., McBride R.A. (1977). Genetic control of Rous sarcoma regression in chickens: linkage with the major histocompatibility complex. Immunogen. 5:325–332.CrossRefGoogle Scholar
  150. Schultze A.E., Mason G.L., Clyde V.L. (1999). Lymphosarcoma with leukemic blood profile in a savannah monitor lizard (Varanus exanthematicus). J Zoo Wild Med. 30:158–164.Google Scholar
  151. Schumberger H.O., Lucke B. (1948). Tumor of fishes, amphibians, and reptiles. Canc Res. 8:657–753.Google Scholar
  152. Schwemmler J.W. (1991). Carcinogenesis as reversal of eukaryotic symbiogenesis: The aposybiosis thory of cancer endocytobiosis. Cell Res. 7:163–199.Google Scholar
  153. Schwemmler J.W. (1998). Basic Cancer Programs — Genes, Signals, Metabolites & Unified Holistic Theory of Evolution. Karger.Google Scholar
  154. Scott H.H., Beattie J, (1927). Neoplasm in a porose crocodile. J Pathol Bacteriol. 30:61–66.CrossRefGoogle Scholar
  155. Shartl A., Hornung U., Nanda I. et al. (1997). Susceptibility to the development of pigment cell tumors in a clone of the Amazon molly (Poecilia formosa), introduced through a micro-chromosome. Canc Res. 57:2993–3000.Google Scholar
  156. Shlumberger H.G. (1957). Tumors characteristics for certain animal species. Canc Res. 17:823–832.Google Scholar
  157. Siciliano M.J., Perlmutter A., Clark E. (1971). Effect of sex on the development of melanoma in hybrid fish of the genus Xiphophorus. Canc Res. 31:725–729.Google Scholar
  158. Setlow R.B., Woodhead A.D., Grist E. (1989). Animal model for ultraviolet radiation-induced melanoma: platyflsh-swordtail hybrid. Proc Natl Acad Sci USA. 86:8922–8926.PubMedCrossRefGoogle Scholar
  159. Sleeman J., Campbell T., Turner O. (1999). Soft Tissue Sarcoma and Possible Eosinophilic Leukemia in a Tiger Salamander, Ambystoma tigrinum. Ass Rept Amph Vet. 9:26–29.Google Scholar
  160. Smith A.C., Little H.F. (1969). Liver lesions produced by hydatid-like cysts in an elasmobranch, the electric ray, Torpedo californica. Natl Cancer Inst Monogr. 31:251–254.PubMedGoogle Scholar
  161. Smith L.E., Nagar S., Kim G.J. et al. (2003). Radiation-induced genomic instability: radiation quality and dose response. Health Phys. 85:23–29.PubMedCrossRefGoogle Scholar
  162. Stanley B. (1999). Granulocytic sarcoma in a King Cobra. Twenty-seventh Annual Southeastern Veterinary Pathology Conference, Tifton, GA, USA.Google Scholar
  163. Stavely-O’Carrol K., Sotomayor E., Montgomery J., et al. (1998). Induction of antigen-specific T cell anergy: an early event in the course of tumour progression. Proc Natl Acad Sci USA. 95:1178–1183.Google Scholar
  164. Stewart H.L. (1972). Cancer and comparative pathology. Prog Exp Tumor Res. 16:142–150.PubMedGoogle Scholar
  165. Stolk A. (1964). Succinic dehydrogenase activity in the nucleolus of the normal and tumorous liver cells of the common iguana (Iguana iguana). Acta Morphol. 5:302–315.Google Scholar
  166. Takashima T. (1976). Hepatoma and cutaneous fibrosarcoma in hatchery-reared trout and salmon related to gonadal maturation. Prog Exp Tumor Res. 20:351–366.PubMedGoogle Scholar
  167. Taylor M., Smith D.A. (2001). Long term effects of internal papillomatosis in Amazona spp. Proc Eur Assoc of Avian Vets. Munich, 122–123.Google Scholar
  168. Tomlinson I.P.M., Novelli M.R., Bodmer W.F. (1996). The mutation rate and cancer. Proc Natl Acad Sci USA. 93:14800–14803.PubMedCrossRefGoogle Scholar
  169. Tomlinson I.P.M., Bodmer W.F. (1999). Selection, the mutation rate and cancer: ensuring that the tail does not wag the dog. Nat Med. 5:11–12.PubMedCrossRefGoogle Scholar
  170. Vandaveer S.S., Erf G.F., Durdik J.M. (2001). Avian T helper one/two immune response balance can be shifted toward inflammation by antigen delivery to scavenger receptors. Brit Poul Sci. 80:172–181.Google Scholar
  171. Vassiliadou N., Searle R.F., Bulmer J.N. (1999). Elevated expression of activation molecules by decidual lymphocytes in women suffering spontaneous early pregnancy loss. Hum Reprod. 14:1194–1200.PubMedCrossRefGoogle Scholar
  172. Vijayasaradhi S., Bouchard B., Houghton A.N. (1990). The melanoma antigen gp75 is the human homologue of the mouse b (brown) locus gene product. J Exp Med. 171:1375–1380.PubMedCrossRefGoogle Scholar
  173. von Mensdorff-Pouilly S., Gourevitch M.M., Kenemans P., et al. (1996). Humoral immune response to polymorphic epithelial mucin 1 in patients with benign and malignant breast tumours. Eur J Cancer. 32:1325–1331.CrossRefGoogle Scholar
  174. Wadsworth J.R. Hill W.C.O. (1956). Selected tumors from the London Zoo menagerie. Univ Penn Vet Ext Quart. 141:70–73.Google Scholar
  175. Wales J.H., Sinnhuber R.O., Hendricks J.D. et al. (1978). Aflatoxin Bl induction of hepatocellular carcinoma in the embryos of rainbow trout (Salmo gairdneri). J Nat Canc Inst. 60:1133–1139.Google Scholar
  176. Wang R.F., Appella E., Kawakami Y. (1996). Identification of TRP-2 as a human tumor antigen recognized by cytotoxic T lymphocytes. J Exp Med. 184:2207–2216.PubMedCrossRefGoogle Scholar
  177. Weber L.W., Bowne W.B., Wolchok J.D. et al. (1998). Tumor immunity and autoimmunity induced by immunization with homologous DNA. J Clin Invest. 102:1258–1264.PubMedCrossRefGoogle Scholar
  178. Wegmann T.G., Lin H., Guilbert L. et al. (1993). Bidirectional cytokine interactions in the maternal-fetal relationship: is successful pregnancy a TH2 phenomenon? Immunol Today. 14:353–356.PubMedCrossRefGoogle Scholar
  179. Wei Y.Q., Huang M.J., Yang L., et al. (2001). Immunogene therapy of tumors with vaccine based on Xenopus homologous vascular endothelial growth factor as a model antigen. Proc Nat Acad Sci USA. 98:11545–1150.PubMedCrossRefGoogle Scholar
  180. Well M., Rodiger K. (1992). Cholangioma in a green iguana. Kleintierpraxis. 93:415–417.Google Scholar
  181. Wellings S.R. (1969). Neoplasia and primitive vertebrate phylogeny: echinoderms, prevertebrates, and fishes-A review. Natl Cancer Inst Monogr. 31:59–128.PubMedGoogle Scholar
  182. Wilson H., Graham J., Roberts R. et al. (2000). Integumentary neoplasms in Psittacine birds: treatment strategies. Proc Assoc of Avian Vets Annual Conference. AAV. Lake Worth, Florida, 211–214.Google Scholar
  183. Wohlgemuth W. (1957). Eine allgemeine theorestische cancerologische konzeption in anlenhnung an Warburg. Das Deutche Gesundheitswesen: Zoo Med. 12:793–798.Google Scholar
  184. Xie Q., Anderson A.S., Morgan R.W. (1996). Marek’s disease virus (MDV) ICP4, pp38, and meq genes are involved in the maintenance of transformation of MDCC-MSB1 MDV-transformed lymphoblastoid cells. J Virol. 70:1125–1131.PubMedGoogle Scholar
  185. Yamamoto T., Takahashi Y., Kase N. et al. (1999). Role of decidual natural killer (NK.) cells in patients with missed abortion: differences between cases with normal and abnormal chromosome. Clin Exp Immunol. 116:449–452.PubMedCrossRefGoogle Scholar
  186. Young J., Leggett B., Gustafson C. (1993). Genomic instability occurs in colorectal carcinomas but not in adenomas. Hum Mutat. 2:351–354.PubMedCrossRefGoogle Scholar
  187. Zeigel R.F., Clark H.F. (1969). Electron microscopic observations on a “C”-type virus in cell cultures derived from a tumor-bearing viper. J Natl Cancer Inst. 43:1097–1102.PubMedGoogle Scholar
  188. Zhou Y., Fisher S.J., Janatpour M., Genbacev O. et al. (1997). Human cytotrophoblasts adopt a vascular phenotype as they differentiate. A strategy for successful endovascular invasion? J Clin Invest. 99:2139–2151.PubMedCrossRefGoogle Scholar
  189. Zwart P., Harshbarger J.C. (1972). Hematopoietic neoplasms in lizards: report of a typical case in Hydrosaurus amboinensis and of a probable case in (Varanus salvator). Int J Cancer. 9:548–553.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2004

Personalised recommendations