Skip to main content

Part of the book series: Bioelectric Engineering ((BEEG))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Weinbaum, S. C. Cowin and Y. Zeng, A model for the excitation of osteocytes by mechanical loadinginduced bone fluid shear stresses, J. Biomech. 27, 339–60 (1994).

    Article  Google Scholar 

  2. L. You, S. C. Cowin, E. Schaffer and S. Weinbaum, A model for strain amplification in the actin cytoskeleton of osteocytes due to fluid drag on pericellular matrix, J. Biomech. 34, 1375–86(2001).

    Article  Google Scholar 

  3. A. Alhadlaq, R. V. Patel, D. Lennon, A. I. Caplan, T. Ayalin and J. J. Mao, 3064 (2002).

    Google Scholar 

  4. K. L. Duncan, Transduction of mechanical strain in bone, ASGSB Bull. 8, 49–62 (1995).

    Google Scholar 

  5. N. X. Chen, K. D. Ryder, F. M. Pavalko, C. H. Turner, D. B. Burr, J. Qiu and K. L. Duncan, Ca(2+) regulates fluid shear-induced cytoskeletal reorganization and gene expression in osteoblasts, Am. J. Physiol. Cell Physiol. 278, 989–97 (2000).

    Google Scholar 

  6. J. J. Mao, Mechanobiology of craniofacial sutures, J. Dent. Res. 81, 810–6 (2002).

    Google Scholar 

  7. J. M. Collins, K. Ramamoorthy, A. Da Silveira, P. A. Patston and J. J. Mao, Microstrain in intramembranous bones induces altered gene expression of MMP1 and MMP2 in the rat, J. Biomech. (2004).

    Google Scholar 

  8. R. A. Kopher and J. J. Mao, Suture growth modulated by the oscillatory component of micromechanical strain, J. Bone Miner. Res. 18, 521–8 (2003).

    Google Scholar 

  9. A. Alhadlaq and J. J. Mao, Tissue-engineered Neogenesis of Human-shaped Mandibular Condyle from Rat Mesenchymal Stem Cells, J. Dent. Res. 82, 951–6 (2003).

    Google Scholar 

  10. A. I. Caplan, The mesengenic process, Clin. Plast. Surg. 21, 429–35 (1994).

    Google Scholar 

  11. M. Owen, Marrow stromal stem cells, J. Cell Sci. Suppl 10, 63–76 (1988).

    Google Scholar 

  12. J. N. Beresford, Osteogenic stem cells and the stromal system of bone and marrow, Clin. Orthop., 270–80 (1989).

    Google Scholar 

  13. H. Ohgushi, V. M. Goldberg and A. I. Caplan, Heterotopic osteogenesis in porous ceramics induced by marrow cells, J. Orthop. Res. 7, 568–78 (1989).

    Article  Google Scholar 

  14. J. H. Bennett, C. J. Joyner, J. T. Triffitt and M. E. Owen, Adipocytic cells cultured from marrow have osteogenic potential, J. Cell Sci. 99 (Pt 1), 131–9(1991).

    Google Scholar 

  15. M. W. Long, J. A. Robinson, E. A. Ashcraft and K. G. Mann, Regulation of human bone marrowderived osteoprogenitor cells by osteogenic growth factors, J. Clin. Invest. 95, 881–7 (1995).

    Article  Google Scholar 

  16. S. A. Azizi, D. Stokes and B. J. Augelli, Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats—similarities to astrocyte grafts, P. Natl. Acad. Sci. USA 95, 3908–13 (1998).

    Article  Google Scholar 

  17. G. Ferrari, G. Cusella-De Angelis and M. Coletta, Muscle regeneration by bone marrow-derived myogenic progenitors, Science 279, 1528–30 (1998).

    Article  Google Scholar 

  18. R. G. Young, D. L. Butler and W. Weber, Use of mesenchymal stem cells in a collagen matrix for Achilles tendon repair, J. Orthop. Res. 16, 406–13 (1998).

    Article  Google Scholar 

  19. Friedenstein AJ. Determined and inducible osteogenic precursor cells. In: Hard Tissue Growth, Repair and Remineralization, Ciba Fdn Symp, North-Holland: Elsevier-Excerpa Medica, 1973, p. 169–185.

    Google Scholar 

  20. A. Friedenstein and A. I. Kuralesova, Osteogenic precursor cells of bone marrow in radiation chimeras, Transplantation 12, 99–108 (1971).

    Google Scholar 

  21. J. Goshima, V. M. Goldberg and A. I. Caplan, The origin of bone formed in composite grafts of porous calcium phosphate ceramic loaded with marrow cells, Clin. Orthop., 274–83 (1991).

    Google Scholar 

  22. I. Martin, A. Muraglia, G. Campanile, R. Cancedda and R. Quarto, Fibroblast growth factor-2 supports ex vivo expansion and maintenance of osteogenic precursors from human bone marrow, Endocrinology 138, 4456–62 (1997).

    Google Scholar 

  23. M. F. Pittenger, A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mosca, M. A. Moorman, D. W. Simonetti, S. Craig and D. R. Marshak, Multilineage potential of adult human mesenchymal stem cells, Science 284, 143–7 (1999).

    Article  Google Scholar 

  24. A. I. Caplan and S. P. Bruder, Mesenchymal stem cells: building blocks for molecular medicine in the 21st century, Trends Mol. Med. 7, 259–64 (2001).

    Article  Google Scholar 

  25. J. E. Dennis, J. P. Carbillet, A. I. Caplan and P. Charbord, The STRO-l+ marrow cell population is multipotential, Cells Tissues Organs 170, 73–82 (2002).

    Article  Google Scholar 

  26. N. Quirici, D. Soligo, P. Bossolasco, F. Servida, C. Lumini and G. L. Deliliers, Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibodies, Exp. Hematol. 30, 783–91 (2002).

    Article  Google Scholar 

  27. E. A. Jones, S. E. Kinsey, A. English, R. A. Jones, L. Straszynski, D. M. Meredith, A. F. Markham, A. Jack, P. Emery and D. McGonagle, Isolation and characterization of bone marrow multipotential mesenchymal progenitor cells, Arthritis Rheum. 46, 3349–60 (2002).

    Article  Google Scholar 

  28. E. J. Caterson, L. J. Nesti, K. G. Danielson and R. S. Tuan, Human marrow-derived mesenchymal progenitor cells: isolation, culture expansion, and analysis of differentiation, Mol. Biotechnol. 20, 245–56 (2002).

    Article  Google Scholar 

  29. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts and P. Walter, Molecular Biology of the Cell (Garland Science, New York, 2002).

    Google Scholar 

  30. A. J. Maniotis, C. S. Chen and D. E. Ingber, Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure, Proc. Natl. Acad. Sci. U S A 94(3), 849–854 (1997).

    Article  Google Scholar 

  31. C. Rotsch and M. Radmacher, Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study, Biophys. J. 78, 520–35 (2000).

    Google Scholar 

  32. T. Ohashi, Y. Ishii, Y. Ishikawa, T. Matsumoto and K. Sato, Experimental and numerical analyses of local mechanical properties measured by atomic force microscopy for sheared endothelial cells, Biomed. Mater. Eng. 12, 319–27 (2002).

    Google Scholar 

  33. J. Lee, A. Ishihara and K. Jacobson, How do cells move along surfaces?, Trends Cell. Biol. 3, 366–70 (1993).

    Article  Google Scholar 

  34. T. P. Stossel, On the crawling of animal cells, Science 260, 1086–94 (1993).

    Google Scholar 

  35. M. R. Bubb, A. M. Senderowicz, E. A. Sausville, K. L. Duncan and E. D. Korn, Jasplakinolide, a cytotoxic natural product, induces actin polymerization and competitively inhibits the binding of phalloidin to F-actin, J. Biol. Chem. 269, 14869–71 (1994).

    Google Scholar 

  36. J. A. Cooper, Effects of cytochalasin and phalloidin on actin, J. Cell Biol. 105, 1473–8 (1987).

    Article  Google Scholar 

  37. I. Spector, N. R. Shochet, D. Blasberger and Y. Kashman, Latrunculins—novel marine macrolides that disrupt microfilament organization and affect cell growth: I. Comparison with cytochalasin D, Cell Motil. Cytoskeleton 13, 127–44 (1989).

    Article  Google Scholar 

  38. N. O. Petersen, W. B. McConnaughey and E. L. Elsoh, Dependence of locally measured cellular deformability on position on the cell, temperature, and cytochalasin B, P. Natl. Acad. Sci. USA 79, 5327–31 (1982).

    Google Scholar 

  39. G. C. Reilly, J. D. Currey and A. E. Goodship, Exercise of young thoroughbred horses increases impact strength of the third metacarpal bone, J. Orthop. Res. 15, 862–8 (1997).

    Article  Google Scholar 

  40. E. L. Batson, G. C. Reilly, J. D. Currey and D. S. Balderson, Postexercise and positional variation in mechanical properties of the radius in young horses, Equine, Vet. J. 32, 95–100 (2000).

    Google Scholar 

  41. D. R. Carter and G. S. Beaupre, Skeletal Function and Form: Mechanobiology of Skeletal Development, Aging, and Regeneration (Cambridge University Press, Cambridge, 2001).

    Google Scholar 

  42. S. B. Arnaud, D. J. Sherrard, N. Maloney, R. T. Whalen and P. Fung, Effects of 1-week head-down tilt bed rest on bone formation and the calcium endocrine system, Aviat. Space Environ. Med. 63, 14–20 (1992).

    Google Scholar 

  43. C. L. Donaldson, S. B. Hulley, J. M. Vogel, R. S. Hattner, J. H. Bayers and D. E. McMillan, Effect of prolonged bed rest on bone mineral, Metabolism 19, 1071–84 (1970).

    Article  Google Scholar 

  44. R. D. Roer and R. M. Dillaman, Bone growth and calcium balance during-simulated weightlessness in the rat, J. Appl. Physiol. 68, 13–20 (1990).

    Google Scholar 

  45. G. D. Whedon, Disuse osteoporosis: physiological aspects, Calcif. Tissue Int. 36Suppl 1, 146–50 (1984).

    Google Scholar 

  46. V. S. Schneider and J. McDonald, Skeletal calcium homeostasis and countermeasures to prevent disuse osteoporosis, Calcif. Tissue Int. 36Suppl 1, 151–44 (1984).

    Google Scholar 

  47. A. E. Tami, M. B. Schaffler and M. L. K. Tate, Probing the tissue to subcellular level structure underlying bone’s molecular sieving function, Biorheology 40(6), 577–590 (2003).

    Google Scholar 

  48. K. M. Reich, C. V. Gay and J. A. Frangos, Fluid shear stress as a mediator of osteoblast cyclic adenosine monophosphate production, J. Cell. Physiol. 143, 100–4 (1990).

    Article  Google Scholar 

  49. M. V. Hillsley and J. A. Frangos, Bone tissue engineering: the role of interstitial fluid flow, Biotechnol. Bioeng. 43, 573–81 (1994).

    Article  Google Scholar 

  50. G. C. Reilly, T. R. Haut, C. E. Yellowley, H. J. Donahue and C. R. Jacobs, Fluid flow induced PGE2 release by bone cells is reduced by glycocalyx degradation whereas calcium signals are not, Biorheology 40, 591–603 (2003).

    Google Scholar 

  51. G. N. Bancroft, V. I. Sikavitsas, D. J. van den, T. L. Sheffield, C. G. Ambrose, J. A. Jansen and A. G. Mikos, Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner, Proc. Natl. Acad. Sci. U. S. A 99(20), 12600–12605 (2002).

    Article  Google Scholar 

  52. M. E. Gomes, V. I. Sikavitsas, E. Behravesh, R. L. Reis and A. G. Mikos, Effect of flow perfusion on the osteogenic differentiation of bone marrow stromal cells cultured on starch-based threedimensional scaffolds, J. Biomed. Mater. Res. 67A(1), 87–95 (2003).

    Article  Google Scholar 

  53. V. I. Sikavitsas, G. N. Bancroft, H. L. Holtorf, J. A. Jansen and A. G. Mikos, Mineralized matrix deposition by marrow stromal osteoblasts in 3D perfusion culture increases with increasing fluid shear forces, Proc. Natl. Acad. Sci. U. S. A 100(25), 14683–14688 (2003).

    Article  Google Scholar 

  54. D. J. van den, G. N. Bancroft, V. I. Sikavitsas, P. H. Spauwen, J. A. Jansen and A. G. Mikos, Flow perfusion culture of marrow stromal osteoblasts in titanium fiber mesh, J. Biomed. Mater. Res. 64A(2), 235–241 (2003).

    Google Scholar 

  55. J. A. Cooper, M. Hewison and P. M. Stewart, Glucocorticoid activity, inactivity and the osteoblast, J. Endocrinol. 163, 159–64 (1999).

    Article  Google Scholar 

  56. C. Maniatopoulos, J. Sodek and A. H. Melcher, Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats, Cell Tissue Res. 254, 317–30 (1988).

    Article  Google Scholar 

  57. C. G. Bellows, J. E. Aubin and J. N. Heersche, Initiation and progression of mineralization of bone nodules formed in vitro: the role of alkaline phosphatase and organic phosphate, Bone Miner. 14, 27–40 (1991).

    Article  Google Scholar 

  58. C. H. Chung, E. E. Golub, E. Forbes, T. Tokuoka and I. M. Shapiro, Mechanism of action of betaglycerophosphate on bone cell mineralization, Calcif. Tissue Int. 51, 305–11 (1992).

    Article  Google Scholar 

  59. C. H. Chung, D. Z. Liu, S. Y. Wang and S. S. Wang, Enhancement of the growth of human endothelial cells by surface roughness at nanometer scale, Biomaterials 24, 4655–61 (2003).

    Article  Google Scholar 

  60. A. M. Mackay, S. C. Beck, J. M. Murphy, F. P. Barry, C. O. Chichester and M. F. Pittenger, Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow, Tissue Eng. 4, 415–28 (1998).

    Google Scholar 

  61. J. U. Yoo, T. S. Barthel, K. Nishimura, L. Solchaga, A. I. Caplan, V. M. Goldberg and B. Johnstone, The chondrogenic potential of human bone-marrow-derived mesenchymal progenitor cells, J. Bone Joint Surg. Am. 80, 1745–57 (1998).

    Google Scholar 

  62. R. Cancedda, F. Descalzi Cancedda and P. Castagnola, Chondrocyte differentiation, Int. Rev. Cytol. 159, 265–358 (1995).

    Google Scholar 

  63. B. M. Spiegelman and H. Green, Cyclic AMP-mediated control of lipogenic enzyme synthesis during adipose differentiation of 3T3 cells, Cell 24, 503–10 (1981).

    Article  Google Scholar 

  64. A. Giganti and E. Friederich, The actin cytoskeleton as a therapeutic target: state of the art and future directions, Prog. Cell Cycle Res. 5, 511–525 (2003).

    Google Scholar 

  65. K. N. Bhalla, Microtubule-targeted anticancer agents and apoptosis, Oncogene 22(56), 9075–9086 (2003).

    Article  Google Scholar 

  66. J. Tannenbaum, Approaches to the molecular biology of cytochalasin action, Front. Biol. 46, 521–559 (1978).

    Google Scholar 

  67. S. S. Brown and J. A. Spudich, Cytochalasin inhibits the rate of elongation of actin filament fragments, J. Cell Biol. 83(3), 657–662 (1979).

    Article  Google Scholar 

  68. S. L. Brenner and E. D. Korn, Substoichiometric concentrations of cytochalasin D inhibit actin polymerization. Additional evidence for an F-actin treadmill, J. Biol. Chem. 254(20), 9982–9985 (1979).

    Google Scholar 

  69. D. C. Lin, K. D. Tobin, M. Grumet and S. Lin, Cytochalasins inhibit nuclei-induced actin polymerization by blocking filament elongation, J. Cell Biol. 84(2), 455–460 (1980).

    Article  Google Scholar 

  70. M. D. Flanagan and S. Lin, Cytochalasins block actin filament elongation by binding to high affinity sites associated with F-actin, J. Biol. Chem. 255(3), 835–838 (1980).

    Google Scholar 

  71. A. Mozo-Villarias and B. R. Ware, Distinctions between mechanisms of cytochalasin D activity for Mg2+-and K+-induced actin assembly, J. Biol. Chem. 259(9), 5549–5554 (1984).

    Google Scholar 

  72. K. Maruyama and K. Tsukagoshi, Effects of KCl, MgCl2, and CaC12 concentrations on the monomerpolymer equilibrium of actin in the presence and absence of cytochalasin D, J. Biochem. (Tokyo) 96(3), 605–611 (1984).

    Google Scholar 

  73. J. H. Hartwig and T. P. Stossel, Cytochalasin B and the structure of actin gels, J. Mol. Biol. 134(3), 539–553 (1979).

    Article  Google Scholar 

  74. K. Maruyama, J. H. Hartwig and T. P. Stossel, Cytochalasin B and the structure of actin gels. II. Further evidence for the splitting of F-actin by cytochalasin B, Biochim. Biophys. Acta 626(2), 494–500 (1980).

    Google Scholar 

  75. L. A. Selden, L. C. Gershman and J. E. Estes, A proposed mechanism of action of cytochalasin D on muscle actin, Biochem. Biophys. Res. Commun. 95(4), 1854–1860 (1980).

    Article  Google Scholar 

  76. J. A. Frangos, L. V. McIntire and S. G. Eskin, Shear stress induced stimulation of mammalian cell metabolism, Biotechnol. Bioeng. 32, 1053–1060 (1988).

    Article  Google Scholar 

  77. J. A. Frangos, S. G. Eskin, L. V. McIntire and C. L. Ives, Flow effects on prostacyclin production by cultured human endothelial cells, Science 227, 1477–9 (1985).

    Google Scholar 

  78. C. R. Jacobs, C. E. Yellowley, B. R. Davis, Z. Zhou, J. M. Cimbala and H. J. Donahue, Differential effect of steady versus oscillating flow on bone cells, J. Biomech. 31, 969–76 (1998).

    Google Scholar 

  79. J. You, G. C. Reilly, X. Zhen, C. E. Yellowley, Q. Chen, H. J. Donahue and C. R. Jacobs, Osteopontin gene regulation by oscillatory fluid flow via intracellular calcium mobilization and activation of mitogen-activated protein kinase in MC3T3-E1 osteoblasts, J. Biol. Chem. 276, 13365–71 (2001).

    Google Scholar 

  80. S. M. McCormick, P. A. Whitson, H. W. Wu and L. V. McIntire, Shear stress differentially regulates PGHS-1 and PGHS-2 protein levels in human endothelial cells, Ann. Biomed. Eng. 28, 824–33 (2000).

    Article  Google Scholar 

  81. S. M. McCormick, S. R. Frye, S. G. Eskin, C. L. Teng, C. M. Lu, C. G. Russell, K. K. Chittur and L. V. McIntire, Microarray analysis of shear stressed endothelial cells, Biorheology 40, 5–11(2003).

    Google Scholar 

  82. S. M. McCormick, S. O. Eskin, L. V. McIntire, C. L. Teng, C. M. Lu, C. G. Russell and K. K. Chittur, DNA microarray reveals changes in gene expression of shear stressed human umbilical vein endothelial cells, P. Natl. Acad. Sci. USA 98(16), 8955–8960 (2001).

    Article  Google Scholar 

  83. L. V. McIntire and S. G. Eskin, Mechanical and biochemical aspects of leukocyte interactions with model vessel walls, Kroc. Found. Ser. 16, 209–219 (1984).

    Google Scholar 

  84. G. S. Worthen, L. A. Smedly, M. G. Tonnesen, D. Ellis, N. F. Voelkel, J. T. Reeves and P. M. Henson, Effects of shear stress on adhesive interaction between neutrophils and cultured endothelial cells, J. Appl. Physiol 63(5), 2031–2041 (1987).

    Google Scholar 

  85. K. Sakai, M. Mohtai and Y. Iwamoto, Fluid shear stress increases transforming growth factor beta 1 expression in human osteoblast-like cells: modulation by cation channel blockades, Calcif. Tissue Int. 63(6), 515–520 (1998).

    Article  Google Scholar 

  86. A. M. Malek, J. Zhang, J. Jiang, S. L. Alper and S. Izumo, Endothelin-1 gene suppression by shear stress: pharmacological evaluation of the role of tyrosine kinase, intracellular calcium, cytoskeleton, and mechanosensitive channels, J. Mol. Cell Cardiol. 31(2), 387–399 (1999).

    Article  Google Scholar 

  87. H. Morawietz, R. Talanow, M. Szibor, U. Rueckschloss, A. Schubert, B. Bartling, D. Darmer and J. Holtz, Regulation of the endothelin system by shear stress in human endothelial cells, J. Physiol 525 Pt 3, 761–770 (2000).

    Article  Google Scholar 

  88. C. A. Simmons, S. Matlis, A. J. Thornton, S. Chen, C. Y. Wang and D. J. Mooney, Cyclic strain enhances matrix mineralization by adult human mesenchymal stem cells via the extracellular signalregulated kinase (ERK1/2) signaling pathway, J. Biomech. 36, 1087–96 (2003).

    Article  Google Scholar 

  89. F. A. Weyts, B. Bosmans, R. Niesing, J. P. van Leeuwen and H. Weinans, Mechanical control of human osteoblast apoptosis and proliferation in relation to differentiation, Calcif. Tissue Int. 72, 505–12 (2003).

    Article  Google Scholar 

  90. B. P. Jena and H. Horber, Atomic Force Microscopy in Cell Biology (Academic Press, San Diego, 2002).

    Google Scholar 

  91. S. Kasas and A. Ikai, A method for anchoring round shaped cells for atomic force microscope imaging, Biophys. J. 68, 1678–80 (1995).

    Google Scholar 

  92. D. L. Bader, T. Ohashi, M. M. Knight, D. A. Lee and K. Sato, Deformation properties of articular chondrocytes: a critique of three separate techniques, Biorheology 39, 69–78 (2002).

    Google Scholar 

  93. E. Henderson, Atomic force microscopy of living cells, Prog. Surf. Sci. 46, 39–60 (1994).

    Article  Google Scholar 

  94. V. J. Morris, A. R. Kirby and A. P. Gunning, Atomic Force Microscopy for Biologists (Imperial College Press, London, 1999).

    Google Scholar 

  95. A. Boisen, O. Hansen and S. Bouwstra, AFM probes with directly fabricated tips, J. Micromech. Microeng. 6, 58–62 (1996).

    Article  Google Scholar 

  96. Y. G. Kuznetsov, A. J. Malkin and A. McPherson, Atomic force microscopy studies of living cells: visualization of motility, division, aggregation, transformation, and apoptosis, J. Struct. Biol. 120, 180–91 (1997).

    Article  Google Scholar 

  97. M. Radmacher, Measuring the elastic properties of biological samples with the AFM, IEEE Eng. Med. Bio. Mag. 16,47–57 (1997).

    Article  Google Scholar 

  98. S. S. Wong, E. Joselevich, A. T. Woolley, C. L. Cheung and C. M. Lieber, Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology, Nature 394, 52–5 (1998).

    Google Scholar 

  99. C. L. Cheung, J. H. Hafner and C. M. Lieber, Carbon nanotube atomic force microscopy tips: direct growth by chemical vapor deposition and application to high-resolution imaging, P. Natl. Acad. Sci. USA 97, 3809–13 (2000).

    Article  Google Scholar 

  100. J. H. Hafner, C. L. Cheung, A. T. Woolley and C. M. Lieber, Structural and functional imaging with carbon nanotube AFM probes, Prog. Biophys. Mol. Biol. 77, 73–110 (2001).

    Google Scholar 

  101. Sethuraman A, Stroscio MA and Dutta M. Potential application of carbon nanotubes in bioengineering. edited by Stroscio MA. 2004.

    Google Scholar 

  102. A. T. Woolley, C. L. Cheung, J. H. Hafner and C. M. Lieber, Structural biology with carbon nanotube AFM probes, Chem. Biol. 7, 193–204 (2000).

    Article  Google Scholar 

  103. Y. Yang, C. Y. Wang and D. A. Erie, Quantitative characterization of biomolecular assemblies and interactions using atomic force microscopy, Methods 29, 175–187 (2003).

    Article  MATH  Google Scholar 

  104. S. Iwabuchii, T. Mori, K. Ogawa, K. Sato, M. Saito, Y. Morita, T. Ushiki and E. Tamiya, Atomic force microscope-based dissection of human metaphase chromosomes and high resolutional imaging by carbon nanotube tip, Arch. Histol. Cytol. 65, 473–9 (2002).

    Google Scholar 

  105. J. L. Alonso and W. H. Goldmann, Feeling the forces: atomic force microscopy in cell biology, Life Sci. 72, 2553–60 (2003).

    Article  Google Scholar 

  106. J. H. Hoh and C. A. Schoenenberger, Surface morphology and mechanical properties of MDCK monolayers by atomic force microscopy, J. Cell Sci. 107 (Pt 5), 1105–14 (1994).

    Google Scholar 

  107. M. Melling, D. Karimian-Teherani, M. Behnam and S. Mostler, Morphological study of the healthy human oculomotor nerve by atomic force microscopy, Neuroimage 20, 795–801 (2003).

    Article  Google Scholar 

  108. J. A. Dvorak, The application of atomic force microscopy to the study of living vertebrate cells in culture, Methods 29, 86–96 (2003).

    Article  Google Scholar 

  109. H. X. You and L. Yu, Atomic force microscopy imaging of living cells: progress, problems and prospects, Methods Cell Sci. 21, 1–17 (1999).

    Article  Google Scholar 

  110. F. M. Ohnesorge, J. K. Horber, W. Haberle, C. P. Czerny, D. P. Smith and G. Binnig, AFM review study on pox viruses and living cells, Biophys. J. 73(4), 2183–94 (1997).

    Google Scholar 

  111. Y. F. Dufrene, Application of atomic force microscopy to microbial surfaces: from reconstituted cell surface layers to living cells, Micron 32, 153–65 (2001).

    Google Scholar 

  112. D. Fotiadis, S. Scheuring, S. A. Muller, A. Engel and D. J. Muller, Imaging and manipulation of biological structures with the AFM, Micron 33, 385–97 (2002).

    Article  Google Scholar 

  113. A. Engel and D. J. Muller, Observing single biomolecules at work with the atomic force microscope, Nat. Struct. Biol. 7, 715–8 (2000).

    Article  Google Scholar 

  114. M. Radmacher, R. W. Tillamnn, M. Fritz and H. E. Gaub, From molecules to cells: imaging soft samples with the atomic force microscope, Science 257, 1900–5 (1992).

    Google Scholar 

  115. L. Chang, T. Kious, M. Yorgancioglu, D. Keller and J. Pfeiffer, Cytoskeleton of living, unstained cells imaged by scanning force microscopy, Biophys. J. 64, 1282–6 (1993).

    Google Scholar 

  116. E. Henderson, P. G. Haydon and D. S. Sakaguchi, Actin filament dynamics in living glial cells imaged by atomic force microscopy, Science 257, 1944–6 (1992).

    Google Scholar 

  117. H. Haga, M. Sasaki, K. Kawabata, E. Ito, T. Ushiki and T. Sambongi, Elasticity mapping of living fibroblasts by AFM and immunofluorescence observation of the cytoskeleton, Ultramicroscopy 82, 253–8 (2000).

    Article  Google Scholar 

  118. H. W. Wu, T. Kuhn and V. T. Moy, Mechanical properties of L929 cells measured by atomic force microscopy: effects of anticytoskeletal drugs and membrane crosslinking, Scanning 20, 389–97 (1998).

    Google Scholar 

  119. F. Braet, R. De Zanger, W. Kalle, A. Raap, H. Tanke and E. Wisse, Comparative scanning, transmission and atomic force microscopy of the microtubular Cytoskeleton in fenestrated liver endothelial cells, Scanning Microsc. Suppl. 10, 225–35 (1996).

    Google Scholar 

  120. A. M. Collinsworth, S. Zhang, W. E. Kraus and G. A. Truskey, Apparent elastic modulus and hysteresis of skeletal muscle cells throughout differentiation, Am. J. Physiol. Cell Physiol. 283, 1219–27 (2002).

    Google Scholar 

  121. U. G. Hofmann, C. Rotsch, W. J. Parak and M. Radmacher, Investigating the cytoskeleton of chicken cardiocytes with the atomic force microscope, J. Struct. Biol. 119, 84–91 (1997).

    Article  Google Scholar 

  122. Y. Yamane, H. Shiga, H. Haga, K. Kawabata, K. Abe and E. Ito, Quantitative analyses of topography and elasticity of living and fixed astrocytes, J. Electron Microsc. (Tokyo) 49, 463–71 (2000).

    Google Scholar 

  123. F. Braet, R. De Zanger, C. Seynaeve, M. Baekeland and E. Wisse, A comparative atomic force microscopy study on living skin fibroblasts and liver endothelial cells, J. Electron Microsc. (Tokyo) 50, 283–90 (2001).

    Article  Google Scholar 

  124. F. Braet, C. Seynaeve, R. De Zanger and E. Wisse, Imaging surface and submembranous structures with the atomic force microscope: a study on living cancer cells, fibroblasts and macrophages, J. Microsc. 190 (Pt 3), 328–38 (1998).

    Article  Google Scholar 

  125. F. Liu, J. Burgess, H. Mizukami and A. Ostafin, Sample preparation and imaging of erythrocyte cytoskeleton with the atomic force microscopy, Cell Biochem. Biophys. 38, 251–70 (2003).

    Google Scholar 

  126. M. Radmacher, M. Fritz, C. M. Kacher, J. P. Cleveland and P. K. Hansma, Measuring the viscoelastic properties of human platelets with the atomic force microscope, Biophys. J. 70(1), 556–567 (1996).

    Google Scholar 

  127. M. Walch, U. Ziegler and P. Groscurth, Effect of streptolysin O on the microelasticity of human platelets analyzed by atomic force microscopy, Ultramicroscopy 82, 259–67 (2000).

    Article  Google Scholar 

  128. A. Simon, T. Cohen-Bouhacina, M. C. Porte, J. P. Aime, J. Amedee, R. Bareille and C. Baquey, Characterization of dynamic cellular adhesion of osteoblasts using atomic force microscopy, Cytometry 54A, 36–47 (2003).

    Article  Google Scholar 

  129. H. Zimmermann, R. Hagedorn, E. Richter and G. Fuhr, Topography of cell traces studied by atomic force microscopy, Eur. Biophys. J. 28, 516–25 (1999).

    Article  Google Scholar 

  130. D. Ricci and M. Grattarola, Scanning force microscopy on live cultured cells: imaging and forceversusdistance investigations, J. Microsc. 176 (Pt 3), 254–61 (1994).

    Google Scholar 

  131. D. Ricci, M. Tedesco and M. Grattarola, Mechanical and morphological properties of living 3T6 cells probed via scanning force microscopy, Microsc. Res. Tech. 36, 165–71 (1997).

    Article  Google Scholar 

  132. C. Le Grimellec, E. Lesniewska, M. C. Giocondi, E. Finot and J. P. Goudonnet, Simultaneous imaging of the surface and the submembraneous cytoskeleton in living cells by tapping mode atomic force microscopy, C. R. Acad. Sci. III 320, 637–43 (1997).

    Google Scholar 

  133. O. Chumakova, A. Liopo, S. A. Chizhik, V. V. Tayurskaya, L. L. Gerashchenko and O. Y. Komkov, Effects of ethanol and acetaldehyde on isolated nerve ending membranes: study by atomic-forced microscopy, Bull. Exp. Biol. Med. 130, 921–4 (2000).

    Article  Google Scholar 

  134. A. Liopo, O. Chumakova, I. Zavodnik, A. Andreyeva, M. Bryszewska and S. A. Chizhik, The response of the neuronal membrane to acetaldehyde treatment, Cell Mol. Biol. Lett. 6, 265–9 (2001).

    Google Scholar 

  135. T. Wakatsuki, B. Schwab, N. C. Thompson and E. L. Elson, Effects of cytochalasin D and latrunculin Bon mechanical properties of cells, J. Cell Sci. 114, 1025–36 (2001).

    Google Scholar 

  136. M. C. Giocondi, V. Vie, E. Lesniewska, J. P. Goudonnet and C. Le Grimellec, In situ imaging of detergent-resistant membranes by atomic force microscopy, J. Struct. Biol. 131, 38–43 (2000).

    Article  Google Scholar 

  137. P. E. Milhiet, M. C. Giocondi and C. Le Grimellec, AFM Imaging of Lipid Domains in Model Membranes, Sci. World J. 3, 59–74 (2003).

    Google Scholar 

  138. S. Yamashina and O. Katsumata, Structural analysis of red blood cell membrane with an atomic force microscope, J. Electron Microsc. (Tokyo) 49, 445–51 (2000).

    Google Scholar 

  139. D. J. Muller, G. M. Hand, A. Engel and G. E. Sosinsky, Conformational changes in surface structures of isolated connexin 26 gap junctions, Embo J. 21, 3598–607 (2002).

    Google Scholar 

  140. M. Gad, A. Itoh and A. Ikai, Mapping cell wall polysaccharides of living microbial cells using atomic force microscopy, Cell Biol. Int. 21, 697–706 (1997).

    Article  Google Scholar 

  141. L. Scheffer, A. Bitler, E. Ben-Jacob and R. Korenstein, Atomic force pulling: probing the local elasticity of the cell membrane, Eur. Biophys. J. 30, 83–90 (2001).

    Article  Google Scholar 

  142. M. McElfresh, E. Baesu, R. Balhorn, J. Belak, M. J. Allen and R. E. Rudd, Combining constitutive materials modeling with atomic force microscopy to understand the mechanical properties of living cells, P. Natl. Acad. Sci. USA 99Suppl 2, 6493–7 (2002).

    Google Scholar 

  143. W. F. Heinz and J. H. Hoh, Spatially resolved force spectroscopy of biological surfaces using the atomic force microscope, Trends Biotechnol. 17(4), 143–150 (1999).

    Article  Google Scholar 

  144. H. G. Hansma and J. H. Hoh, Biomolecular imaging with the atomic force microscope, Annu. Rev. Biophys. Biomol. Struct. 23, 115–39 (1994).

    Article  Google Scholar 

  145. A. L. Weisenhorn, P. Maivald, H. Butt and H. G. Hansma, Measuring adhesion, attraction, and repulsion between surfaces in liquids with an atomic-force microscope, Phys. Rev. B Con. Matt. 45, 11226–11232(1992).

    Google Scholar 

  146. K. Hu, P. Radhakrishnan, R. V. Patel and J. J. Mao, Regional structural and viscoelastic properties of fibrocartilage upon dynamic nanoindentation of the articular condyle, J. Struct. Biol. 136(1), 46–52 (2001).

    Article  Google Scholar 

  147. R. V. Patel and J. J. Mao, Microstructural and elastic properties of the extracellular matrices of the superficial zone of neonatal articular cartilage by atomic force microscopy, Front. Biosci. 8, 18–25 (2003).

    Google Scholar 

  148. J. M. Gere, Mechanics of Materials (Brooks/Cole, Pacific Grove, 2001).

    Google Scholar 

  149. G. T. Charras and M. A. Horton, Determination of cellular strains by combined atomic force microscopy and finite element modeling, Biophys. J. 83, 858–79 (2002).

    Google Scholar 

  150. K. Sato, K. Nagayama, N. Kataoka, M. Sasaki and K. Hane, Local mechanical properties measured by atomic force microscopy for cultured bovine endothelial cells exposed to shear stress, J. Biomech. 33, 127–35 (2000).

    Article  Google Scholar 

  151. M. Lekka, P. Laidler, D. Gil, J. Lekki, Z. Stachura and A. Z. Hrynkiewicz, Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy, Eur. Biophys. J. 28, 312–6 (1999).

    Article  Google Scholar 

  152. S. G. Shroff, D. R. Saner and R. Lal, Dynamic micromechanical properties of cultured rat atrial myocytes measured by atomic force microscopy, Am. J. Physiol. 269, 286–92 (1995).

    Google Scholar 

  153. A. H. Swihart, J. M. Mikrut, J. B. Ketterson and R. C. Macdonald, Atomic force microscopy of the erythrocyte membrane skeleton, J. Microsc. 204, 212–25 (2001).

    Article  MathSciNet  Google Scholar 

  154. C. Rotsch, F. Braet, E. Wisse and M. Radmacher, AFM imaging and elasticity measurements on living rat liver macrophages, Cell Biol. Int. 21, 685–96 (1997).

    Article  Google Scholar 

  155. F. Braet, C. Rotsch, E. Wisse and M. Radmacher, Comparison of fixed and living endothelial cells by atomic force microscopy, Appl. Phys. A 66, S575–S578 (1997).

    Google Scholar 

  156. H. Miyazaki and K. Hayashi, Atomic force microscopic measurement of the mechanical properties of intact endothelial cells in fresh arteries, Med. Biol. Eng. Comput. 37, 530–6 (1999).

    Google Scholar 

  157. A. B. Mathur, G. A. Truskey and W. M. Reichert, Atomic force and total internal reflection fluorescence microscopy for the study of force transmission in endothelial cells, Biophys. J. 78, 1725–35 (2000).

    Article  Google Scholar 

  158. C. Rotsch, K. Jacobson and M. Radmacher, Dimensional and mechanical dynamics of active and stable edges in motile fibroblasts investigated by using atomic force microscopy, P. Natl. Acad. Sci. USA 96, 921–6 (1999).

    Article  Google Scholar 

  159. K. Sinniah, J. Paauw and J. Ubels, Investigating live and fixed epithelial and fibroblast cells by atomic force microscopy, Curr. Eye Res. 25, 61–8 (2002).

    Article  Google Scholar 

  160. J. Domke, S. Dannohl, W. J. Parak, D. J. Muller, W. K. Aicher and M. Radmacher, Substrate dependent differences in morphology and elasticity of living osteoblasts investigated by atomic force microscopy, Colloids Surf. B. Biointerfaces 19, 367–379 (2000).

    Article  Google Scholar 

  161. G. T. Charras, P. P. Lehenkari and M. A. Horton, Atomic force microscopy can be used to mechanically stimulate osteoblasts and evaluate cellular strain distributions, Ultramicroscopy 86, 85–95 (2001).

    Article  Google Scholar 

  162. M. Sugawara, Y. Ishida and H. Wada, Local mechanical properties of guinea pig outer hair cells measured by atomic force microscopy, Hear. Res. 174, 222–9 (2002).

    Article  Google Scholar 

  163. C. Le Grimellec, M. C. Giocondi, M. Lenoir, M. Vater, G. Sposito and R. Pujol, High-resolution threedimensional imaging of the lateral plasma membrane of cochlear outer hair cells by atomic force microscopy, J. Comp. Neurol. 451, 62–9 (2002).

    Google Scholar 

  164. W. H. Goldmann, R. Galneder, M. Ludwig, W. Xu, E. D. Adamson, N. Wang and R. M. Ezzell, Differences in elasticity of vinculin-deficient F9 cells measured by magnetometry and atomic force microscopy, Exp. Cell Res. 239, 235–42 (1998).

    Article  Google Scholar 

  165. E. L. Elson, Cellular mechanics as an indicator of cytoskeletal structure and function, Annu. Rev Biophys. Biophys. Chem. 17, 397–430 (1988).

    Article  Google Scholar 

  166. J. A. Theriot and T. J. Mitchison, Actin microfilament dynamics in locomoting cells, Nature 352,126–31 (1991).

    Article  Google Scholar 

  167. T. D. Pollard and G. G. Borisy, Cellular motility driven by assembly and disassembly of actin filaments, Cell 112, 453–65 (2003).

    Article  Google Scholar 

  168. S. W. Grill, J. Howard, E. Schaffer, E. H. Stelzer and A. A. Hyman, The distribution of active force generators controls mitotic spindle position, Science 301, 518–21 (2003).

    Article  Google Scholar 

  169. J. M. Scholey, I. Brust-Mascher and A. Mogilner, Cell division, Nature 422, 746–52 (2003).

    Article  Google Scholar 

  170. U. Dammer, O. Popescu, P. Wagner, D. Anselmetti, H. J. Guntherodt and G. N. Misevic, Binding strength between cell adhesion proteoglycans measured by atomic force microscopy, Science 267, 1173–5 (1995).

    Google Scholar 

  171. M. Benoit, Cell adhesion measured by force spectroscopy on living cells, Methods Cell Biol. 68, 91–114 (2002).

    Google Scholar 

  172. C. J. Weijer, Visualizing signals moving in cells, Science 300, 96–100 (2003).

    Article  Google Scholar 

  173. M. Schliwa and G. Woehlke, Molecular motors, Nature 422, 759–65 (2003).

    Article  Google Scholar 

  174. R. C. May and L. M. Machesky, Phagocytosis and the actin cytoskeleton, J. Cell Sci. 114, 1061–77 (2001).

    Google Scholar 

  175. R. E. Harrison and S. Grinstein, Phagocytosis and the microtubule cytoskeleton, Biochem. Cell Biol. 80, 509–15 (2002).

    Article  Google Scholar 

  176. T. Y. Lee and A. I. Gotlieb, Microfilaments and microtubules maintain endothelial integrity, Microsc. Res. Tech. 60, 115–27 (2003).

    Article  Google Scholar 

  177. Y. Yoon, K. Pitts and M. McNiven, Studying cytoskeletal dynamics in living cells using green fluorescent protein, Mol. Biotechnol. 21, 241–50 (2002).

    Article  Google Scholar 

  178. A. H. E, W. F. Heinz, M. D. Antonik, N. P. D’Costa, S. Nageswaran, C. A. Schoenenberger and J. H. Hoh, Relative microelastic mapping of living cells by atomic force microscopy, Biophys. J. 74, 1564–78 (1998).

    Google Scholar 

  179. M. L. Wang, L. J. Nesti, R. Tuli, J. Lazatin, K. G. Danielson, P. F. Sharkey and R. S. Tuan, Titanium particles suppress expression of osteoblastic phenotype in human mesenchymal stem cells, J. Orthop. Res. 20(6), 1175–1184 (2002).

    Article  Google Scholar 

  180. E. Wulf, A. Deboben, F. A. Bautz, H. Faulstich and T. Wieland, Fluorescent phallotoxin, a tool for the visualization of cellular actin, Proc. Natl. Acad. Sci. U S A 76(9), 4498–4502 (1979).

    Google Scholar 

  181. N. C. Zanetti and M. Solursh, Induction of chondrogenesis in limb rnesenchymal cultures by disruption of the actin cytoskeleton, J. Cell Biol. 99(1 Pt 1), 115–123 (1984).

    Article  Google Scholar 

  182. Y. B. Lim, S. S. Kang, T. K. Park, Y. S. Lee, J. S. Chun and J. K. Sonn, Disruption of actin cytoskeleton induces chondrogenesis of mesenchymal cells by activating protein kinase C-alpha signaling, Biochem. Biophys. Res. Commun. 273(2), 609–613 (2000).

    Article  Google Scholar 

  183. Y. B. Lim, S. S. Kang, W. G. An, Y. S. Lee, J. S. Chun and J. K. Sonn, Chondrogenesis induced by actin cytoskeleton disruption is regulated via protein kinase C-dependent p38 mitogen-activated protein kinase signaling, J. Cell Biochem. 88(4), 713–718 (2003).

    Article  Google Scholar 

  184. P. F. Davies, Mechanisms involved in endothelial responses to hemodynamic forces, Atherosclerosis 131Suppl, S15–S17 (1997).

    Google Scholar 

  185. M. A. Gimbrone, Jr., N. Resnick, T. Nagel, L. M. Khachigian, T. Collins and J. N. Topper, Hemodynamics, endothelial gene expression, and atherogenesis, Ann. N. Y. Acad. Sci. 811, 1–10 (1997).

    Google Scholar 

  186. N. E. Ajubi, J. Klein-Nulend, P. J. Nijweide, T. Vrijheid-Lammers, M. J. Alblas and E. H. Burger, Pulsating fluid flow increases prostaglandin production by cultured chicken osteocytes—a cytoskeleton-dependent process, Biochem. Biophys. Res. Commun. 225(1), 62–68 (1996).

    Article  Google Scholar 

  187. W. T. Butler, The nature and significance of osteopontin, Connect. Tissue Res. 23(2–3), 123–136 (1989).

    Google Scholar 

  188. M. P. Mark, W. T. Butler, C. W. Prince, R. D. Finkelman and J. V. Ruch, Developmental expression of 44-kDa bone phosphoprotein (osteopontin) and bone gamma-carboxyglutamic acid (Gla)-containing protein (osteocalcin) in calcifying tissues of rat, Differentiation 37(2), 123–136 (1988).

    Google Scholar 

  189. D. T. Denhardt and X. Guo, Osteopontin: a protein with diverse functions, FASEB J. 7(15), 1475–1482 (1993).

    Google Scholar 

  190. L. C. Gerstenfeld, T. Uporova, S. Ashkar, E. Salih, Y. Gotoh, M. D. McKee, A. Nanci and M. J. Glimcher, Regulation of avian osteopontin pre-and posttranscriptional expression in skeletal tissues, Ann. N. Y. Acad. Sci. 760, 67–82 (1995).

    Google Scholar 

  191. L. V. Barter, K. A. Hruska and R. L. Duncan, Human osteoblast-like cells respond to mechanical strain with increased bone matrix protein production independent of hormonal regulation, Endocrinology 136(2), 528–535 (1995).

    Google Scholar 

  192. T. Kubota, M. Yamauchi, J. Onozaki, S. Sato, Y. Suzuki and J. Sodek, Influence of an intermittent compressive force on matrix protein expression by ROS 17/2.8 cells, with selective stimulation of osteopontin, Arch. Oral Biol. 38(1), 23–30 (1993).

    Google Scholar 

  193. C. F. Dewey, Jr., S. R. Bussolari, M. A. Gimbrone, Jr. and P. F. Davies, The dynamic response of vascular endothelial cells to fluid shear stress, J. Biomech. Eng 103(3), 177–185 (1981).

    Article  Google Scholar 

  194. S. G. Eskin, C. L. Ives, L. V. McIntire and L. T. Navarro, Response of cultured endothelial cells to steady flow, Microvasc. Res. 28(1), 87–94 (1984).

    Article  Google Scholar 

  195. R. P. Franke, M. Grafe, H. Schnittler, D. Seiffge, C. Mittermayer and D. Drenckhahn, Induction of human vascular endothelial stress fibres by fluid shear stress, Nature 307(5952), 648–649 (1984).

    Article  Google Scholar 

  196. C. F. Dewey, Jr., Effects of fluid flow on living vascular cells, J. Biomech. Eng 106(1), 31–35 (1984).

    Article  Google Scholar 

  197. A. Remuzzi, C. F. Dewey, Jr., P. F. Davies and M. A. Gimbrone, Jr., Orientation of endothelial cells in shear fields in vitro, Biorheology 21(4), 617–630 (1984).

    Google Scholar 

  198. M. J. Levesque and R. M. Nerem, The elongation and orientation of cultured endothelial cells in response to shear stress, J. Biomech. Eng 107(4), 341–347 (1985).

    Google Scholar 

  199. A. R. Wechezak, R. F. Viggers and L. R. Sauvage, Fibronectin and F-actin redistribution in cultured endothelial cells exposed to shear stress, Lab. Invest. 53(6), 639–647 (1985).

    Google Scholar 

  200. R. P. Franke, M. Grafe, U. Dauer, H. Schnittler and C. Mittermayer, Stress fibres (SF) in human endothelial cells (HEC) under shear stress, Klin. Wochenschr. 64(19), 989–992 (1986).

    Google Scholar 

  201. A. R. Wechezak, T. N. Wight, R. F. Viggers and L. R. Sauvage, Endothelial adherence under shear stress is dependent upon microfilament reorganization, J. Cell Physiol. 139(1), 136–146 (1989).

    Article  Google Scholar 

  202. E. R. Levin, Endothelins, N. Engl. J. Med. 333(6), 356–363 (1995).

    Article  Google Scholar 

  203. M. S. Goligorsky, A. S. Budzikowski, H. Tsukahara and E. Noiri, Co-operation between endothelin and nitric oxide in promoting endothelial cell migration and angiogenesis, din. Exp. Pharmacol. Physiol 26(3), 269–271 (1999).

    Google Scholar 

  204. L. Morbidelli, C. Orlando, C. A. Maggi, F. Ledda and M. Ziche, Proliferation and migration of endothelial cells is promoted by endothelins via activation of ETB receptors, Am. J. Physiol 269(2 Pt 2), H686–H695 (1995).

    Google Scholar 

  205. E. Noiri, Y. Hu, W. F. Bahou, C. R. Keese, I. Giaever and M. S. Goligorsky, Permissive role of nitric oxide in endothelin-induced migration of endothelial cells, J. Biol. Chem. 272(3), 1747–1752 (1997).

    Google Scholar 

  206. A. D. Wren, C. R. Hiley and T. P. Fan, Endothelin-3 mediated proliferation in wounded human umbilical vein endothelial cells, Biochem. Biophys. Res. Commun. 196(1), 369–375 (1993).

    Article  Google Scholar 

  207. A. M. Malek, I. W. Lee, S. L. Alper and S. Izumo, Regulation of endothelin-1 gene expression by cell shape and the microfilament network in vascular endothelium, Am. J. Physiol. 273(5 Pt 1), C1764–C1774 (1997).

    Google Scholar 

  208. F. A. Kuypers, Red cell membrane damage, J. Heart Valve Dis. 7(4), 387–395 (1998).

    Google Scholar 

  209. Y. Ohta, H. Okamoto, M. Kanno and T. Okuda, Atomic force microscopic observation of mechanically traumatized erythrocytes, Artif. Organs 26(1), 10–17 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Yourek, G., Al-Hadlaq, A., Patel, R., McCormick, S., Reilly, G.C., Mao, J.J. (2004). Nanophysical Properties of Living Cells. In: Stroscio, M.A., Dutta, M. (eds) Biological Nanostructures and Applications of Nanostructures in Biology. Bioelectric Engineering. Springer, Boston, MA. https://doi.org/10.1007/0-306-48628-8_4

Download citation

  • DOI: https://doi.org/10.1007/0-306-48628-8_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-48627-2

  • Online ISBN: 978-0-306-48628-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics