Skip to main content

Alternative Processes

  • Chapter
  • 5067 Accesses

Abstract

Chlorine is produced not only by the electrolysis of sodium chloride solutions but also from HC1, KC1, and other metal chlorides, by both chemical and electrochemical methods. The amount of chlorine from alternative processes is about 5.9% of the total world production. In the United States, it was about 4.0% of the total in 2002 [1]. Most of this chlorine was from the electrolysis of KC1 in mercury or membrane cells (Table 15.1) and from HC1. Only small amounts are produced by the electrolysis of other metal chlorides.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Blackburn, CMAI, Personal Communication (2002).

    Google Scholar 

  2. W.H. Sheltmire, Chlorinated Bleaches and Sanitizing Agents. In J.S. Sconce (ed.), Chlorine: Its Manufacture, Properties, and Uses, ACS Monograph 154 Robert E. Krieger Publishing Co., Huntington, NY (1972), p. 512.

    Google Scholar 

  3. T.F. O’Brien, Regenerating Chlorine from Waste HCl, Chloralkali Industry Update and Forecast, Consulting Resources Corp. conference, Philadelphia, PA (1996).

    Google Scholar 

  4. M.F. Fogler, The Salt Process for Chlorine Manufacture. In J.S. Sconce (ed.), Chlorine: Its Manufacture, Properties, and Uses, ACS Monograph 154, Robert E. Krieger Publishing Co., Huntington, NY (1972), p. 235.

    Google Scholar 

  5. C.P. Van Dijk, Chem. Econ. Eng. Rev. 4(12), 42 (1972).

    Google Scholar 

  6. O. Lange (ed.), Blüchers Auskunftsbuch für die chemische Industrie, Walter de Gruyter and Co., Berlin (1926).

    Google Scholar 

  7. H. Deacon, U.S. Patent 85,370 (1868).

    Google Scholar 

  8. A. Redniss, HCl Oxidation Processes. In J.S. Sconce (ed.), Chlorine: Its Manufacture, Properties, and Uses, ACS Monograph 154, Robert E. Krieger Publishing Co., Huntington, NY (1972), p. 250.

    Google Scholar 

  9. C.W. Arnold and K.A. Kobe, Chem. Eng. Progr. 48(6), 293 (1952).

    CAS  Google Scholar 

  10. H. Klebe, A. Meffert, and A. Longenfield, German Patent 1,963,946 (1974).

    Google Scholar 

  11. C.P. Van Dijk and W.C. Schreiner, Chem. Eng. Progr. 69(4), 57 (1973).

    Google Scholar 

  12. L.E. Bostwick, Chem. Eng. 83(21), 86 (1976).

    CAS  Google Scholar 

  13. W.C. Schreiner, A.E. Cover, W.D. Hunter, C.P. Van Dijk, and H.S. Jongenberger, Hydrocarbon Proc. 53(11), 151 (1974).

    CAS  Google Scholar 

  14. H.Y Pan, R.G. Minet, S.W. Benson, and T.T. Tsotsis, Ind. Eng. Chem. Res. 33, 2996 (1994).

    Article  CAS  Google Scholar 

  15. H. Itoh, Y. Kono, M. Aijoka, S. Takesaka, and M. Katzita, US. Patent 4,803,065 (1989).

    Google Scholar 

  16. T. Kiyoura, Y. Kogure, T. Nagayama, and K. Kanaya, US. Patent 4,822,589 (1989).

    Google Scholar 

  17. R.G. Minet, S.W. Benson, and T.T. Tsotsis, U.S. Patent 4,994,256 (1991).

    Google Scholar 

  18. R.G. Minet, T.T. Tsotsis, and M. Mortensen, Economic and Environmental Aspects for a 60,000-ton per Year Plant for Chlorine Recovery from Hydrogen Chloride, Ninth Large Plants Symposium, Antwerp (1995).

    Google Scholar 

  19. V. Wong and S.H. Wang, Chlorine from Hydrogen Chloride by the Carrier Catalyst Process, PEP Review 94-1-3, SRI International, Inc., Menlo Park, CA (1995).

    Google Scholar 

  20. F.M. Berkey, Electrolysis of Hydrochloric Acid Solutions. In J.S. Sconce (ed.), Chlorine: Its Manufacture, Properties and Uses, ACS Monograph 154, Robert E. Krieger Publishing Co., Huntington, NY (1972), p. 200.

    Google Scholar 

  21. Chlorine and Hydrogen from Acid by Electrolysis, technical brochure, Krupp Uhde, Dortmund (1993).

    Google Scholar 

  22. F.B. Grosseifinger, Chem. Eng. 71(19), 172 (1964).

    Google Scholar 

  23. S. Payer and W. Strewe. In T.C. Jeffrey, P.A. Danna, and H.S. Holden (eds) Proceedings, Chlorine Bicentennial Symposium, The Electrochemical Society, Princeton, NJ (1974), p. 257.

    Google Scholar 

  24. F. Hine, Electrode Processes and Electrochemical Engineering, Plenum Press, New York (1985), p. 129.

    Book  Google Scholar 

  25. P. Gallone and G. Messner, Electrochem. Technol. 3, 321 (1965).

    CAS  Google Scholar 

  26. W.C. Gardiner, Chem. Eng. 54(1), 100 (1947).

    CAS  Google Scholar 

  27. H. Isfort and W.J. Stockmans. In M.M. Silver and E.M. Spore (eds), Advances in the Chlor-Alkali and Chlorate Industry, Proceedings, vol. 84-111, The Electrochemical Society, Princeton, NJ (1984), p. 259.

    Google Scholar 

  28. F. Hine, Electrode Processes and Electrochemical Engineering, Plenum Press, New York (1985), p. 87.

    Book  Google Scholar 

  29. K. Schneiders and C. Herwig, Recycle of HCl to Chlorine, 38th Chlorine Institute Plant Operations Seminar, Houston, TX (1995).

    Google Scholar 

  30. F. Federico, G.N. Martelli, and D. Pinter, Gas-Diffusion Electrodes for Chlorine-Related Technologies. In J. Moorhouse (ed.), Modern Chlor-Alkali Technology, vol. 8, Blackwell Science, Oxford (2001), p. 114.

    Chapter  Google Scholar 

  31. Chemical Week, 10 March 2004, p. 22.

    Google Scholar 

  32. D.J. Eames and J. Newman, J. Electrochem. Soc. 142, 3619 (1995).

    Article  CAS  Google Scholar 

  33. J.A. Trainham and F.J. Freire, Fifth World Congress of Chemical Engineering (1996).

    Google Scholar 

  34. S. Motupally, D.T. Mah, F.J. Freire, and J.W. Weidner, Interface 7(2), 32 (1998).

    CAS  Google Scholar 

  35. J.A. Trainham, CG. Law, Jr., J.S. Newman, K.B. Keating, and D.J. Eames, U.S. Patent 5,411,641 (1995).

    Google Scholar 

  36. B.V. Tilak, RW.T. Lu, J.E. Colman, and S. Srinivasan. In J. O’M. Bockris, B.E. Conway, E. Yeager, and R.E. White (eds), Comprehensive Treatise on Electrochemistry, vol. 2, Plenum Press, New York (1981), p. 1.

    Google Scholar 

  37. F. Hine, Electrode Processes and Electrochemical Engineering, Plenum Press, New York (1985), p. 87.

    Book  Google Scholar 

  38. F.S. Low, U.S. Patent 2,486,766 (1949).

    Google Scholar 

  39. F.S. Low, U.S. Patent 2,470,073 (1949).

    Google Scholar 

  40. C.P. Roberts, Chem. Eng. Progr. 46(9), 456 (1950).

    CAS  Google Scholar 

  41. F. Hine, S. Yoshizawa, K. Yamakawa, and Y. Nakane, Electrochem. Technol. 4, 555 (1966).

    CAS  Google Scholar 

  42. F. Hine and K. Yamakawa, Electrochim. Acta 13, 2119 (1968).

    Article  CAS  Google Scholar 

  43. F. Hine and K. Yamakawa, Electrochim. Acta 15, 769 (1970).

    Article  CAS  Google Scholar 

  44. C.L. Mantell, Electrochemical Engineering, McGraw-Hill Book Co., New York (1960).

    Google Scholar 

  45. C.H. Lemke and V.H. Markant, Kirk-Othmer Encyclopedia of Chemical Technology, 4th edition, vol. 22, John Wiley & Sons, Inc., New York (1997), p. 134.

    Google Scholar 

  46. M. Sittig, Sodium: Its Manufacture, Properties and Uses, Reinhold Publishing Corp., New York (1956).

    Google Scholar 

  47. J.C. Downs, Brit. Patent 238,956 (1924).

    Google Scholar 

  48. T. Minani and S. Soda, U.S. Patent 4,192,794 (1980).

    Google Scholar 

  49. D.W.F. Hardie, Ind. Chemist 30, 161 (1954).

    CAS  Google Scholar 

  50. D.A. Kramer, Kirk-Othmer Encyclopedia of Chemical Technology, electronic version, John Wiley & Sons, Inc., New York (2003).

    Google Scholar 

  51. D.W. Schroeder, Ind. Eng. Chem. Proc. Des. and Devt. 1(2), 141 (1962).

    Article  CAS  Google Scholar 

  52. Y. Ding and J. Winnick, J. Appl. Electrochem. 26, 143 (1996).

    Article  CAS  Google Scholar 

  53. F. Hine and M. Yasuda, J. Electrochem. Soc. 119, 1057 (1972).

    Article  CAS  Google Scholar 

  54. F. Hine, M. Yasuda, and M. Higuchi. In T.C. Jeffrey, P.A. Danna, and H.S. Holden (eds), Proceedings, Chlorine Bicentennial Symposium, The Electrochemical Society, Princeton, NJ (1974), p. 278.

    Google Scholar 

  55. Soda Handbook 1998, Japan Soda Industry Association, Tokyo (1998), p. 365.

    Google Scholar 

  56. S.A. Michalek and KB. Leitz, J. Water Pollution Control 44, 1697 (1972).

    CAS  Google Scholar 

  57. C.J. Brockmann, Electrochemistry, D. Van Nostrand, New York (1931), p. 216.

    Google Scholar 

  58. C.L. Mantell, Industrial Electrochemistry, McGraw-Hill Book Co., New York (1960), p. 372.

    Google Scholar 

  59. C.L. Mantell, Industrial Electrochemistry, McGraw-Hill Book Co., New York (1960), p. 296.

    Google Scholar 

  60. E.J. Laubusch, Water Chlorination. In J.S. Sconce (ed.), Chlorine: Its Manufacture, Properties and Uses, ACS Monograph 154, Reinhold Publishing Corp., New York (1972), p. 457.

    Google Scholar 

  61. J.E. Bennett, Chem. Eng. Progr. 70(12), 60 (1974).

    CAS  Google Scholar 

  62. B. Case and W.E. Heaton, Cooling Water Electrolysis at Coastal Power Stations. In Local Generation and Use of Chlorine and Hypochlorite, Society of Chemical Industry, London (1980).

    Google Scholar 

  63. N. Krstajic, V. Nakic, and M. Spasojevic, J. Appl. Electrochem. 17, 77 (1987).

    Article  CAS  Google Scholar 

  64. M. Rudolf, I. Rousar, and J. Krysa, Electrochim. Acta 40, 169 (1995).

    Article  CAS  Google Scholar 

  65. M. Rudolf, I. Rousar, and J. Krysa, J. Appl. Electrochem. 25, 155 (1995).

    Article  CAS  Google Scholar 

  66. Package assembled by Powell Fabrication and Manufacturing, Inc. from internal sources and related papers for authors’ use (2003).

    Google Scholar 

  67. T.F. O’Brien, Emergency Vent Scrubbing Systems-Design; Operation; Hazard Analysis, Seventh Annual Electrode Corporation Chlorine/Chlorate Seminar, Cleveland, OH (1991).

    Google Scholar 

  68. L.J. Updyke, Emergency Vent Scrubbers, 5th Chlorine Plant Operations Workshop, Houston, TX (1990).

    Google Scholar 

  69. G. Gordon and L. Adam, Minimizing Chlorate Ion Formation in Drinking Water when Hypochlorite is the Chlorinating Agent, published by AWWA Research Foundation; undated, supplied by Powell Fabrication and Manufacturing, Inc., (2003).

    Google Scholar 

  70. G. Gordon, L. Adam, and B. Bubnis, J. AWWA 87(6), 97 (1995).

    CAS  Google Scholar 

  71. C.E. Redemann, The Chemistry of Hypochlorous Acid and the Hypochlorites with Applications to Bleaching and Bleachmaking, 2nd edition, Purex Corp. (1970).

    Google Scholar 

  72. T.V. Bommaraju, Water Quality Res. J. Canada 30, 339 (1995).

    CAS  Google Scholar 

  73. B. Bubnis, Suspended-Solids Quality Test for Bleach by Vacuum Filtration, Novachem Laboratories, Oxford, OH (2001).

    Google Scholar 

  74. J.K. Nelson, Materials of Construction for Alkalies and Hypochlorites. In B.J. Moniz and W.I. Pollock (eds), Process Industries Corrosion, National Association of Corrosion Engineers, Houston, TX (1986), p. 297.

    Google Scholar 

  75. FRP Storage Tanks for Sodium Hypochlorite, Powell Fabrication and Manufacturing, Inc., St. Louis, MI (2003).

    Google Scholar 

  76. J.J. Gates, AnCor Plastics, Personal Communication (1989).

    Google Scholar 

  77. Factors Affecting Performance of FRP in Sodium Hypochlorite Environments, revised and updated from presentation to 25th Annual Technical Conference of the Reinforced Plastics/Composites Division of the Society of the Plastics Industry, Inc., in 1970, Reichhold Chemicals, Inc., Research Triangle Park, NC (1990).

    Google Scholar 

  78. H.F. Wachob, F. McGarry, and G.H. Abell, The Effect of Sodium Hypochlorite on the Long-Term Performance of Rotationally Molded XLPE Storage Tanks; undated, supplied by Powell Fabrication and Manufacturing, Inc., (2003).

    Google Scholar 

  79. G. Gordon and B. Bubnis, Bleach Stability and Filtration, AWWA Water Technology Conference, Boston, MA (1996).

    Google Scholar 

  80. Sodium Hypochlorite Manual, Pamphlet 96, Edition 2, Rev. 1, The Chlorine Institute, Inc., Washington, DC (2000).

    Google Scholar 

  81. H.A. Pham, A Comparison of Methods for Determining the Concentration of Transition Metal Ions in Liquid Bleach, thesis, Miami University, Oxford, OH (1997).

    Google Scholar 

  82. ANSI/NSF 60/2001, Issue 16, NSF International, Ann Arbor, MI (2001).

    Google Scholar 

  83. T.H. Hutchinson and DJ. Van Wijk, Bromate and Chlorate-Evaluation of Potential Effects in Aquatic Organisms and Derivation of Environmental Quality Standards. In S. Sealey (ed.), Modern Chlor-Alkali Technology, vol. 7, Royal Society of Chemistry, Cambridge (1998), p. 26.

    Google Scholar 

  84. V.A. Grinberg, A.M. Shundin, E.K. Tuseeva, D.P Aleksandrova, Yu.B. Khokhryakov, V.I. Sergienko, and A.K. Mantynov, Russian J.Electrochem. 33, 577 (1997).

    CAS  Google Scholar 

  85. VA. Grinberg, A.M. Shundin, and E.K. Tuseeva, Russian J. Electrochem. 34, 1079 (1998).

    CAS  Google Scholar 

  86. A. Kraft, M. Stadelmann, M. Blaschke, D. Kreysig, B. Sandt, F. Schröder, and J. Rennau, J. Appl. Electrochem. 29, 861 (1999).

    CAS  Google Scholar 

  87. A. Kraft, M. Stadelmann, M. Blaschke, D. Kreysig, B. Sandt, F. Schröder, and J. Rennau, J. Appl Electrochem. 29, 895 (1999).

    Article  CAS  Google Scholar 

  88. K. Scott, Electrochemical Processes for Clean Technology, Royal Society of Chemistry, Cambridge (1995), p. 189.

    Google Scholar 

  89. VS. Nayak, Ind. Eng. Chem. Res. 35, 3808 (1996).

    Article  CAS  Google Scholar 

  90. H.G. Grube, Z Electrochem. 44, 640 (1938).

    CAS  Google Scholar 

  91. M. Yamashita, F. Hine, and S. Yoshizawa, Denki Kagaku (J. Electrochem. Soc. Japan) 32, 366 (1964).

    CAS  Google Scholar 

  92. M. Yamashita, F. Hine, and S. Yoshizawa, Denki Kagaku (J. Electrochem. Soc. Japan) 30, 562 (1962).

    Google Scholar 

  93. W.N. Brooks, D.A. Denton, and N.M. Sammes. In F. Hine, B.V Tilak, J.M. Fenton, and J.D. Lisius (eds), Process Performance of Electrodes for Industrial Electrochemical Processes, PV 89-110, The Electrochemical Society, Pennington, NJ (1989), p. 39.

    Google Scholar 

  94. C.G. Ferron and P.F. Duby. In F. Hine, B.V. Tilak, J.M. Fenton, and J.D. Lisius (eds), Process Performance of Electrodes for Industrial Electrochemical Processes, PV 89-110, The Electrochemical Society, Pennington, NJ (1989), p. 259.

    Google Scholar 

  95. G.N. Marteni, R. Ornelas, and G. Faita, Electrochim. Acta 39, 1551 (1994).

    Article  Google Scholar 

  96. M.J. Niksa, Acid/Base Recovery from Sodium Sulfate, Fifth International Forum on Electrolysis, Clearwater, FL(1990).

    Google Scholar 

  97. A.D. Martin, Electrodialysis-A Means for Recovery of Sodium Hydroxide from Sodium-Containing Process Streams, Fifth International Forum on Electrolysis, Clearwater, FL (1990).

    Google Scholar 

  98. J. Jörissen and K.H. Simmrock, J. Appl. Electrochem. 21, 869 (1991).

    Article  Google Scholar 

  99. G. Faita, Caustic Soda without Chlorine Production, Seventh International Forum on Electrolysis, Clearwater, FL (1993).

    Google Scholar 

  100. A.D. Martin. In T.C. Jeffrey, K. Ota, J. Fenton, and H. Kawamoto (eds), Chlor-Alkali and Chlorate Production, and New Mathematical and Computational Methods in Electrochemical Engineering, PV 93-114, The Electrochemical Society, Princeton, NJ (1993), p. 65.

    Google Scholar 

  101. A.D. Martin and D.H. Mann, Electrohydrolysis of Sodium Sulfate, Special publication, Royal Society of Chemistry, Cambridge (1995), p. 274.

    Google Scholar 

  102. J.P. Gender, D. Hartsough, and J. Thompson. In J. Newman and R.C. White (eds), Proceedings, Douglas N. Bennion Memorial Symposium, Topics in Electrochemical Engineering, PV 94-122, The Electrochemical Society, Pennington, NJ (1994), p. 457.

    Google Scholar 

  103. M. Rakib, Ph. Mocotaguy, Ph. Viers, E. Petit, and G. Durand, J. Appl. Electrochem. 39, 1439 (1999).

    Article  Google Scholar 

  104. S. Holze, J. Jörissen, C. Pischen, and H. Kalvelege, Chem. Eng. Technol. 17, 382 (1994).

    Article  CAS  Google Scholar 

  105. Hydrinatm Membrane Electrolyzers, Brochure, DeNora Permelec S.p.A., Milan (1993).

    Google Scholar 

  106. D. Pletcher, D. Genders, N.L. Weinberg, and E.F. Spiegel, U.S. Patent 5,246,551 (1993).

    Google Scholar 

  107. J.S. Thompson and D. Genders, U.S. Patent 5,098,332 (1992).

    Google Scholar 

  108. K.N. Mani, Aquatech Systems, Inc., Personal Communication (1995).

    Google Scholar 

  109. T.V. Bommaraju, Unpublished Results (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc

About this chapter

Cite this chapter

O’Brien, T.F., Bommaraju, T.V., Hine, F. (2005). Alternative Processes. In: Handbook of Chlor-Alkali Technology. Springer, Boston, MA. https://doi.org/10.1007/0-306-48624-5_15

Download citation

Publish with us

Policies and ethics