Skip to main content

Abstract

Corrosion is a multibillion dollar worldwide problem. In the United States, corrosion is estimated [1] to occur at a rate of 14,000 kg min-1, costing about $200 billion per year. Incidents from corrosion may force shutdowns of chemical plants, the associated penalties in serious situations being financial loss, loss of human life, and damage to the environment. It is for these reasons that all chemical plants emphasize safety and implement safe operations by training plant personnel. Safety management extends into ensuring proper selection of materials of construction, quality control during manufacturing, fabrication, and construction, and routine maintenance during normal plant operations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Gileadi, Electrode Kinetics for Chemists, Chemical Engineers and Material Scientists, VCH publishers, New York (1993).

    Google Scholar 

  2. M.G. Fontana, Process Industries Corrosion, National Association of Corrosion Engineers, Houston (1975), p. 1.

    Google Scholar 

  3. D.H. Declerck and A.J. Patarcity, Chem. Eng. 93(24), 46 (1986).

    CAS  Google Scholar 

  4. F. Hine, Zairyo (J. Soc. of Mater. Sci. Japan) 26, 1124 (1977).

    Article  CAS  Google Scholar 

  5. J.A. Collins and M.L. Monack, Materials Performance. 12(6), 11 (1973).

    CAS  Google Scholar 

  6. H. Uhlig, Corrosion Handbook, John Wiley & Sons, Inc., New York (1949).

    Google Scholar 

  7. U.R. Evans, An Introduction to Metallic Corrosion, Edward Arnold Publishers, London (1963).

    Google Scholar 

  8. J. O’M. Bockris and A.K.N. Reddy, Modern Electrochemistry, Vol. 2, Plenum Press, New York (1970).

    Book  Google Scholar 

  9. M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, Pergamon Press, New York (1966).

    Google Scholar 

  10. S. Papavinasan, Corrosion Inhibitors. In R.W. Revie (ed.) Uhlig’s Corrosion Handbook, 2nd Edition, John Wiley & Sons, Inc., New York (2000), p. 1089.

    Google Scholar 

  11. G. Wranglen, An Introduction to Corrosion and Protection of Metals, Institut For Metallskydd, Stockholm (1972).

    Google Scholar 

  12. H.H. Uhlig (ed.) Corrosion Handbook, John Wiley & Sons, Inc., New York (1969).

    Google Scholar 

  13. Corrosion Data Survey, Metals Section, 6th Edition, National Association of Corrosion Engineers, Houston (1985).

    Google Scholar 

  14. P.A. Schweitzer (ed.), Corrosion Resistance Tables, 4th Edition, Marcel Dekker, New York (1995).

    Google Scholar 

  15. F. Hine, Fushoku-Kogaku No Gaiyou (Introduction to Corrosion Engineering), Kagaku Dojin, Kyoto (1977), p. 113.

    Google Scholar 

  16. F. Hine and K. Nishiyama, Zairyo (J. Soc. of Mater. Sci., Japan) 25, 777 (1975).

    Article  Google Scholar 

  17. M. Okubo, Sumitomo Kagaku 2127, 135 (1971).

    Google Scholar 

  18. M. Kowaka and H. Nagano, Corrosion 24, 427 (1968).

    Article  CAS  Google Scholar 

  19. M. Kowaka and H. Nagano, Corrosion 32, 395 (1976).

    Article  CAS  Google Scholar 

  20. C. Wagner, Z Physik. Chem. 21B, 25 (1933).

    Google Scholar 

  21. Simplifying Stainless Steel Selection with Carpenter’s SelectaloyTM Method, Brochure published by Carpenter Technology Corporation (1969).

    Google Scholar 

  22. B.V. Tilak and C-P. Chen, Bull. Electrochem. 13(b), 245 (1997).

    CAS  Google Scholar 

  23. R.W. Herbert, Selection of Appropriate Materials of Construction in the Chlor-Alkali Plant, Fourth Annual Electrode Corporation Chlorine/Chlorate Seminar, Chardon, OH (1987).

    Google Scholar 

  24. S. Krishnamurty, S. Muthukumaraswamy, and R. Thangappan, Chlor-Alkali Plant, Materials of Construction. In J.J. McKetta and W.A. Cunningham (eds), Encyclopedia of Chemical Engineering and Design, Marcel Dekker, New York (1987), p. 450.

    Google Scholar 

  25. P. Kohl and K. Lohrberg, J. Appl. Electrochem. 19, 589 (1989).

    Article  CAS  Google Scholar 

  26. A. Ullman, Cost Saving in Chlorine Plants by Benefiting from the Unique Properties of Titanium. In J. Moorhouse (ed.), Modern Chlor-Alkali Technology, vol. 8, Society of Chemical Industry, London (2001), p. 282.

    Chapter  Google Scholar 

  27. Chlorine-A Brochure of Olin Matheson Corporation (1959).

    Google Scholar 

  28. Titanium Design Data Book for the Chemical Processor, Titanium Metal Corporation of America, New York (1974).

    Google Scholar 

  29. N.C. Horowitz, Chem. Eng. 88(7), 105 (1981).

    CAS  Google Scholar 

  30. TV. Bommaraju, Water Quality Res. J. Canada 30, 339 (1995).

    CAS  Google Scholar 

  31. V. Ashworth and P.J. Borden, Corrosion Sci. 10, 709 (1970).

    Article  CAS  Google Scholar 

  32. R.L. Cowan and R.W. Staehle, J. Electrochem. Soc. 118, 557 (1971).

    Article  CAS  Google Scholar 

  33. F. Hine and M. Okubo, Boshoku Gijutsu (Corrosion Engineering) 25, 509 (1976).

    CAS  Google Scholar 

  34. M. Okubo and S. Tokunaga, Soda to Enso (Soda and Chlorine) 26, 313 (1975).

    CAS  Google Scholar 

  35. M. Pourbaix, Corrosion 25, 267 (1969).

    Article  CAS  Google Scholar 

  36. T. Ohashi and H. Kajiyama, Soda to Enso (Soda and Chlorine) 26, 307 (1975).

    CAS  Google Scholar 

  37. M. Yasuda, S. Tokunaga, T. Taga, and F. Hine, Corrosion 41, 720 (1985).

    Article  CAS  Google Scholar 

  38. Y.S. Park, A.K. Agarwal, and R.W. Staehle, Corrosion 35, 333 (1979).

    Article  CAS  Google Scholar 

  39. M. Yasuda, K. Fukumoto, H. Koizumi, Y Ogata, and F. Hine, Corrosion 43, 497 (1987).

    Article  Google Scholar 

  40. K.H. Lee, G. Gragnoline, and D.D. MacDonald, Corrosion 41, 540 (1985).

    Article  CAS  Google Scholar 

  41. N.S. McIntyre, T.E. Rummery, M.G. Cook, and D. Owen, J. Electrochem. Soc. 123, 1164 (1976).

    Article  CAS  Google Scholar 

  42. R.D.K. Mishra, Electrochim. Acta 31, 51 (1986).

    Article  Google Scholar 

  43. F.K. Kies, I.A. Fromsen, and B. Coad, Chem. Eng. 77(6), 150 (1970).

    CAS  Google Scholar 

  44. M. A. Streicher, Austenitic and Ferritic Stainless Steels. In R.W. Revie (ed.) Uhlig’s Corrosion Handbook, John Wiley & Sons, Inc., New York (2000), p. 601.

    Google Scholar 

  45. E-Brite 26-1, ASTM Grade XM-27, Brochure of Airco Vacuum Metals, Revised 1975.

    Google Scholar 

  46. J.R. Crum and W.G. Lipscomb, Materials Perform. 25(4), 9 (1986).

    CAS  Google Scholar 

  47. A.B. Misercola, R.P. Tracy, I.A. Franson, and R.J. Knoth, The Use of E-Brite 26-1TM Ferritic Stainless Steel in the Production of Caustic Soda, Brochure of Airco Vacuum Metals (1976).

    Google Scholar 

  48. T.V. Bommaraju and P.J. Orosz, Caustic Evaporator Corrosion: Causes and Remedy. In T.C. Wellington (ed.), Modern Chlor-Alkali Technology, vol. 5, Elsevier Appl. Science, New York (1992), p. 307.

    Chapter  Google Scholar 

  49. D.J. Pye, U.S. Patent 2,610,105 (1952).

    Google Scholar 

  50. T.V. Bommaraju, W.V. Hauck, and V.J. Lloyd, U.S. Patent 4,585,579 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc

About this chapter

Cite this chapter

O’Brien, T.F., Bommaraju, T.V., Hine, F. (2005). Corrosion. In: Handbook of Chlor-Alkali Technology. Springer, Boston, MA. https://doi.org/10.1007/0-306-48624-5_14

Download citation

Publish with us

Policies and ethics