Mechanisms of Cortical Computation

  • Leif H. Finkel
  • Diego Contreras
Part of the Bioelectric Engineering book series (BEEG)


The purpose of this chapter is to explore the computational principles underlying cortical function. We will consider ideas proposed in a large number of recent theoretical models that present a range of interesting, and sometimes conflicting, mechanisms. We will try to tie these theoretical principles to the underlying biology, and will spend most of our time considering the link between the intrinsic properties of neurons and the informationprocessing abilities of cortical circuits. We will consider computations carried out across different cortical areas, associated with processes ranging from sensory detection in vision, audition, and olfaction, to recognition, memory, and categorization.


Firing Rate Bayesian Network Receptive Field Pyramidal Cell Place Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott, L. F., 2001, The timing game, Nat. Neurosci. 4:115–116.CrossRefGoogle Scholar
  2. Aertsen, A., Diesmann, M., and Gewaltig, M. O., 1996, Propagation of synchronous spiking activity in feedforward neural networks, J. Physiol. Paris 90:243–247.CrossRefGoogle Scholar
  3. Ahlstrom, V., Blake, R., and Ahlstrom, U., 1997, Perception of biological motion, Perception 26:1539–1548.CrossRefGoogle Scholar
  4. Barlow, H. B., and Levick, W. R., 1965, The mechanism of directionally selective units in rabbit’s retina, J. Physiol. 178:477–504.Google Scholar
  5. Beierlein, M., Gibson, J. R., and Connors, B. W., 2000, A network of electrically coupled interneurons drives synchronized inhibition in neocortex, Nat. Neurosci. 3:904–910.CrossRefGoogle Scholar
  6. Best, P. J., White, A. M., and Minai, A., 2001, Spatial processing in the brain: The activity of hippocampal place cells, Annu. Rev. Neurosci. 24:459–486.CrossRefGoogle Scholar
  7. Boahen, K. A., 2002, A retinomorphic chip with parallel pathways: Encoding ON, OFF, Increasing, and Decreasing visual signals, J. Analog Integr. Circ. Signal Process. 30:121–135.CrossRefGoogle Scholar
  8. Bullier, J., 2001, Integrated model of visual processing, Brain Res. Brain Res. Rev. 36:96–107.CrossRefGoogle Scholar
  9. Buzsaki, G., 2002, Theta oscillations in the hippocampus, Neuron 33:325–340.CrossRefGoogle Scholar
  10. Churchland, P. S., and Sejnowski, T. J., 1992, The Computational Brain, MIT Press, Cambridge.Google Scholar
  11. Das, S., and Finkel, L. H., 2003, Cortical integration of bottom-up, top-down and horizontal information in biological motion recognition, in: Proceedings of 1st International IEEE EMBS Neuroengineering Conference, Capri.Google Scholar
  12. Douglas, R. J., and Martin, K. A., 1991, A functional microcircuit for cat visual cortex, J. Physiol. 440:735–769.Google Scholar
  13. Edelman, G., 1989, Neural Darwinism, Basic Books, New York.Google Scholar
  14. Erisir, A., Lau, D., Rudy, B., and Leonard, C. S., 1999, Function of specific K(+) channels in sustained high-frequency firing of fast-spiking neocortical interneurons, J. Neurophysiol. 82:2476–2489.Google Scholar
  15. Gold, J. I., and Shadlen, M. N., 2001, Neural computations that underlie decisions about sensory stimuli, Trends Cogn. Sci. 5:10–16.CrossRefGoogle Scholar
  16. Grossman, E. D., and Blake, R., 2002, Brain areas active during visual perception of biological motion, Neuron 35:1167–1175.CrossRefGoogle Scholar
  17. Harris, K. D., Henze, D. A., Hirase, H., Leinekugel, X., Dragoi, G., Czurko, A., and Buzsaki, G., 2002. Spike train dynamics predicts theta-related phase precession in hippocampal pyramidal cells, Nature 417:738–741.CrossRefGoogle Scholar
  18. Hebb, D. O., 1949, The Organization of Behavior: A Neuropsychological Theory. Wiley, New York.Google Scholar
  19. Hopfield, J. J., 1995, Pattern recognition computation using action potential timing for stimulus representation, Nature 376:33–36.CrossRefGoogle Scholar
  20. Hopfield, J. J., and Brody, C. D., 2000, What is a moment? “Cortical” sensory integration over a brief interval, Proc. Natl. Acad. Sci. USA 97:13919–13924.CrossRefGoogle Scholar
  21. Hopfield, J. J., and Brody, C. D., 2001, What is a moment? Transient synchrony as a collective mechanism for spatiotemporal integration, Proc. Natl. Acad. Sci. USA 98:1282–1287.CrossRefGoogle Scholar
  22. Ito, M., and Gilbert, C. D., 1999, Attention modulates contextual influences in the primary visual cortex of alert monkeys, Neuron 22:593–604.CrossRefGoogle Scholar
  23. Kamondi, A., Acsady, L., Wang, X. J., and Buzsaki, G., 1998, Theta oscillations in somata and dendrites of hippocampal pyramidal cells in vivo: Activity-dependent phase-precession of action potentials, Hippocampus 8:244–261.CrossRefGoogle Scholar
  24. Keysers, C., Xiao, D. K., Foldiak, P., and Perrett, D. I., 2001, The speed of sight, J. Cogn. Neurosci. 13:90–101.CrossRefGoogle Scholar
  25. Laurent, G., Wehr, M., and Davidowitz, H., 1996, Temporal representations of odors in an olfactory network, J. Neurosci. 16:3837–3847.Google Scholar
  26. Laurent, G., Stopfer, M., Friedrich, R. W., Rabinovich, M. I., Volkovskii, A., and Arbarbanel, H. D. I., 2001. Odor encoding as an active dynamical process: Experiments, computation, and theory, Annnu. Rev. Neurosci. 24:263–297.CrossRefGoogle Scholar
  27. Lisman, J. E., and Otmakhova, N. A., 2001, Storage, recall, and novelty detection of sequences by the hippocampus: Elaborating on the SOCRATIC model to account for normal and aberrant effects of dopamine, Hippocampus 11:551–568.CrossRefGoogle Scholar
  28. Llinas, R. R., 1988, The intrinsic electrophysiological properties of mammalian neurons: Insights into central nervous system function, Science 242:1654–1664.CrossRefGoogle Scholar
  29. Maas, W., ed. 1999, Computation with Spiking Neurons, MIT Press, Cambridge.Google Scholar
  30. Magee, J. C., 2001, Dendritic mechanisms of phase precession in hippocampal CA1 pyramidal neurons, J. Neurophysiol. 86:528–532.Google Scholar
  31. Malik, J., and Perona, P., 1990, Preattentive texture discrimination with early vision mechanisms, J. Opt. Soc. Am. A 7:923–932.Google Scholar
  32. Markram, H., Lubke, J., Frotscher, M., and Sakmann, B., 1997, Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs, Science 275:213–215.CrossRefGoogle Scholar
  33. Miller, D. A., and Zucker, S. W., 1999, Computing with self-excitatory cliques: A model and an application to hyperacuity-scale computation in visual cortex, Neural. Comput. 11:21–66.CrossRefGoogle Scholar
  34. Petersen, R. S., Panzeri, S., and Diamond, M. E., 2002, The role of individual spikes and spike patterns in population coding of stimulus location in rat somatosensory cortex, Biosystems 67:187–193.CrossRefGoogle Scholar
  35. Pearl, J., 1988, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, Morgan Kaufmann, San Mateo, CA.Google Scholar
  36. Poggio, T., and Reichardt, W., 1973, Considerations on models of movement detection, Kybernetik 13:223–227.CrossRefGoogle Scholar
  37. Raizada, R. D., and Grossberg, S., 2003, Towards a theory of the laminar architecture of cerebral cortex: Computational clues from the visual system, Cereb. Cortex 13:100–113.CrossRefGoogle Scholar
  38. Ramachandran, V. S., 1985, The neurobiology of perception, Perception 14:97–103.Google Scholar
  39. Rao, R. P., and Ballard, D. H., 1997, Dynamic model of visual recognition predicts neural response properties in the visual cortex, Neural Comput. 9:721–763.CrossRefGoogle Scholar
  40. Rao, R. P., and Sejnowski, T. J., 2001, Spike-timing-dependent Hebbian plasticity as temporal difference learning, Neural Comput. 13:2221–2237.zbMATHCrossRefGoogle Scholar
  41. Sajda, P., and Finkel, L. H., 1995, Intermediate-level visual representations and the construction of surface perception, J. Cogn. Neurosci. 7:267–291.Google Scholar
  42. Saul, A. B., and Humphrey, A. L., 1990, Spatial and temporal response properties of lagged and nonlagged cells in cat lateral geniculate nucleus, J. Neurophysiol. 64:206–224.Google Scholar
  43. Sutton, R. S., and Barto, A. B., 1998, Reinforcement Learning: An Introduction, MIT Press, Cambridge, MA.Google Scholar
  44. Vaadia, E., Bergman, H., and Abeles, M., 1989, Neuronal activities related to higher brain functions-theoretical and experimental implications, IEEE Trans. Biomed. Eng. 36:25–35.CrossRefGoogle Scholar
  45. van Santen, J. P., and Sperling, G., 1985, Elaborated Reichardt detectors, J. Opt. Soc. Am. A 2:300–321.Google Scholar
  46. VanRullen, R., and Thorpe, S. J., 2002, Surfing a spike wave down the ventral stream, Vision Res. 42:2593–2615.CrossRefGoogle Scholar
  47. Watson, A. B., and Ahumada, A. J., Jr., 1985. Model of human visual-motion sensing, J. Opt. Soc. Am. A 2:322–341.CrossRefGoogle Scholar
  48. Weiss, Y., 1997, Interpreting images by propagating Bayesian beliefs, Adv. Neural Inform. Process. Syst. 9:908–915.Google Scholar
  49. Whittington, M. A., Traub, R. D., Kopell, N., Ermentrout, B., and Buhl, E. H., 2000, Inhibition-based rhythms: Experimental and mathematical observations on network dynamics, Int. J. Psychophysiol. 38:315–336.CrossRefGoogle Scholar
  50. Wilson, M. A., and McNaughton, B. L., 1994, Reactivation of hippocampal ensemble memories during sleep, Science 265:676–679.CrossRefGoogle Scholar
  51. Zanker, J. M., Srinivasan, M. V., and Egelhaaf, M., 1999, Speed tuning in elementary motion detectors of the correlation type, Biol. Cybern. 80:109–116.zbMATHCrossRefGoogle Scholar
  52. Zeki, S., 2003, Improbable areas in the visual brain, Trends Neurosci. 26:23–26.CrossRefGoogle Scholar
  53. Zhou, H., Friedman, H. S., and von der Heydt, R., 2000, Coding of border ownership in monkey visual cortex, J. Neurosci. 20:6594–6611.Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 2005

Authors and Affiliations

  • Leif H. Finkel
    • 1
  • Diego Contreras
    • 2
  1. 1.Department of BioengineeringUniversity of PennsylvaniaPhiladelphia
  2. 2.Department of NeuroscienceUniversity of PennsylvaniaPhiladelphia

Personalised recommendations