Electrophysiological Neuroimaging

  • Bin He
  • Jie Lian
Part of the Bioelectric Engineering book series (BEEG)


Although electrical activity recorded from the exposed cerebral cortex of a monkey was reported in 1875 (Caton, 1875), it was not until 1929 that Hans Berger, a psychiatrist in Jena, Germany, first recorded rhythmic electrical activity from the human head (Berger, 1929). Since then, the electroencephalogram (EEG) has become one of the most prominent methods for noninvasive examination of brain activity. Tremendous effort has been made in order to describe the phenomena of the EEG in normal individuals and in those with various diseases. In particular, the EEG has been demonstrated to be a valuable tool for both researchers and clinicians in the fields of sleep physiology and epilepsy, although other applications are also promising, such as in the fields of psychiatry and psychophysiology.


Singular Value Decomposition Head Model Dipole Source Inverse Solution Inverse Filter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahlfors, S. P., Simpson, G. V., Dale, A. M., Belliveau, J. W., Liu, A. K., Korvenoja, A., Virtanen, J., Huotilainen, M., Tootell, R. B., Aronen, H. J., and Ilmoniemi, R. J., 1999, Spatiotemporal activity of a cortical network for processing visual motion revealed by MEG and fMRI, J. Neurophysiol. 82:2545–2555.Google Scholar
  2. Babiloni, F., Babiloni, C., Carducci, F., Fattorini, L., Onorati, P., and Urbano, A., 1996, Spline Laplacian estimate of EEG potentials over a realistic magnetic resonance-constructed scalp surface model, Electroencephalogr. Clin. Neurophysiol. 98:363–373.CrossRefGoogle Scholar
  3. Babiloni, F., Babiloni, C., Carducci, F., Fattorini, L., Anello, C., Onorati, P., and Urbano, A., 1997, High resolution EEG: A new model-dependent spatial deblurring method using a realistically-shaped MR-constructed subject’s head model, Electroencephalogr. Clin. Neurophysiol. 102:69–80.CrossRefGoogle Scholar
  4. Babiloni, F., Carducci, F., Babiloni. C., and Urbano, A., 1998, Improved realistic Laplacian estimate of highly-sampled EEG potentials by regularization techniques, Electroencephalogr. Clin. Neurophysiol. 106:336–343.CrossRefGoogle Scholar
  5. Babiloni, F., Carducci, F., Cincotti, F., Del Gratta, C., Roberti, G. M., Romani, G. L., Rossini, P. M., and Babiloni, C., 2000, Integration of high resolution EEG and functional magnetic resonance in the study of human movement-related potentials, Methods Inf. Med. 39:179–182.Google Scholar
  6. Babiloni, F., Carducci, F., Cincotti, F., Gratta, C. D., Pizzella, V., Romani, G. L., Rossini, P. M., Tecchio, F., and Babiloni, C., 2001, Linear inverse source estimate of combined EEG and MEG data related to voluntary movements, Hum. Brain Mapp. 14:197–209.CrossRefGoogle Scholar
  7. Babiloni, F., Babiloni, C., Carducci, F., Cincotti, F., Astolfi, L., Basilisco, A., Rossini, P. M., Ding, L., Ni, Y., Cheng, J., Christine, K., Sweeney, J., and He, B., in press, Assessing time-varying cortical functional connectivity with the multimodel integration of high resolution EEG and fMRI data by Directed Transfer Function, NeuroImage.Google Scholar
  8. Backus, G. E., and Gilbert, J. F., 1968, The resolving power of gross earth data, Geophys. J. R. Astronom. Soc. 16:169–205.zbMATHGoogle Scholar
  9. Baillet, S., and Garnero, L., 1997, A Bayesian approach to introducing anatomo-functional priors in the EEG/MEG inverse problem, IEEE Trans. Biomed. Eng. 44:374–385.CrossRefGoogle Scholar
  10. Baillet, S., Garnero, L., Marin, C., and Hugonin, J. P., 1999, Combined MEG and EEG source imaging by minimization of mutual information, IEEE Trans. Biomed. Eng. 46:522–534.CrossRefGoogle Scholar
  11. Barr, R. C., Ramsey, M., III, and Spach, M. S., 1977, Relating epicardial to body surface potential distributions by means of transfer coefficients based on geometry measurements, IEEE Trans. Biomed. Eng. 24:1–11.CrossRefGoogle Scholar
  12. Benar, C. G., and Gotman, J., 2002, Modeling of post-surgical brain and skull defects in the EEG inverse problem with the boundary element method, Clin. Neurophysiol. 113:48–56.CrossRefGoogle Scholar
  13. Berger, H., 1929, Über das Elektrenkephalogramm des Menschen I, Arch. Psychiatr. 87:527–570.CrossRefGoogle Scholar
  14. Biglieri, E., and Yao, K., 1989, Some properties of SVD and their application to digital signal processing, Signal Process. 18:227–289.MathSciNetCrossRefGoogle Scholar
  15. Bonmassar, G., Schwartz, D. P., Liu, A. K., Kwong, K. K., Dale, A. M., and Belliveau, J. W., 2001, Spatiotemporal brain imaging of visual-evoked activity using interleaved EEG and fMRI recordings, NeuroImage 13:1035–1043.CrossRefGoogle Scholar
  16. Cakmur, R., Towle, V. L., Mullan, J. F., Suarez, D., and Spire, J. P., 1997, Intra-operative localization of sensorimotor cortex by cortical somatosensory evoked potentials: From analysis of waveforms to dipole source modeling, Acta Neurochir. (Wien) 139:1117–1124.CrossRefGoogle Scholar
  17. Caton, R., 1875, The electrical currents of the brain, Br. Med. J. 2:278.Google Scholar
  18. Cincotti, F., Babiloni, C., Carducci, F., Rossini, P. M., Del Gratta, C., Romani, G. L., Angelone, L., and Babiloni, F., 2001, fMRI priors for the linear inverse estimation of EEG cortical sources, Electromagnetics 21:579–592.CrossRefGoogle Scholar
  19. Colli Franzone, P., Guerri, L., Taccardi, B., and Viganotti, C., 1985, Finite element approximation of regularized solutions of the inverse potential problem of electrocardiography and applications to experimental data, Calcolo XXII:I, 91–186.MathSciNetCrossRefGoogle Scholar
  20. Crouzeix, A., Yvert, B., Bertrand, O., and Pernier, J., 1999, An evaluation of dipole reconstruction accuracy with spherical and realistic head models in MEG, Clin. Neurophysiol. 110:2176–2188.CrossRefGoogle Scholar
  21. Cuffin, B. N., 1995, A method for localizing EEG sources in realistic head models, IEEE Trans. Biomed. Eng. 42:68–71.CrossRefGoogle Scholar
  22. Cuffin, B. N., 1996, EEG localization accuracy improvements using realistically shaped head models, IEEE Trans. Biomed. Eng. 43:299–303.CrossRefGoogle Scholar
  23. Cuffin, B. N., 1998, EEG dipole source localization, IEEE Eng. Med. Biol. Mag. 17:118–122.CrossRefGoogle Scholar
  24. Dale, A. M., and Sereno, M. I., 1993, Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: A linear approach, J. Cog. Neurosci. 5:162–176.CrossRefGoogle Scholar
  25. Dale, A. M., Liu, A. K., Fischl, B. R., Buckner, R. L., Belliveau, J. W., Lewine, J. D., and Halgren, E., 2000, Dynamic statistical parametric mapping: Combining fMRI and MEG for high-resolution imaging of cortical activity, Neuron 26:55–67.CrossRefGoogle Scholar
  26. Diekmann, V., Becker, W., Jurgens, R., Grozinger, B., Kleiser, B., Richter, H. P., and Wollinsky, K. H., 1998, Localisation of epileptic foci with electric, magnetic, and combined electromagnetic models, Electroencephalogr. Clin. Neurophysiol. 106:297–313.CrossRefGoogle Scholar
  27. Edlinger, G., Wach, P., and Pfurtscheller, G., 1998, On the realization of an analytic high-resolution EEG, IEEE Trans. Biomed. Eng. 45:736–745.CrossRefGoogle Scholar
  28. Finke, S., and Gulrajani, R. M., 2001, Conventional and reciprocal approaches to the forward problem of electroencephalography, Electromagnetics 21:513–530.CrossRefGoogle Scholar
  29. Fisch, B. J., 1991, Spehlmann’s EEG Primer, 2nd ed., Elsevier, New York.Google Scholar
  30. Fletcher, D. J., Amir, A., Jewett, D. L., and Fein, G., 1995, Improved method for computation of potentials in a realistic head shape model, IEEE Trans. Biomed. Eng. 42:1094–1104.CrossRefGoogle Scholar
  31. Fuchs, M., Wagner, M., Kohler, T., and Wischmann, H. A., 1999, Linear and nonlinear current density reconstructions, J. Clin. Neurophysiol. 16:267–295.CrossRefGoogle Scholar
  32. Fuchs, M., Wagner, M., Wischmann, H. A., Kohler, T., Theiben, A., Drenckhahn, R., and Buchner, H., 1998, Improving source reconstructions by combining bioelectric and biomagnetic data, Electroencephalogr. Clin. Neurophysiol. 107:93–111.CrossRefGoogle Scholar
  33. Gavit, L., Baillet, S., Mangin, J. F., Pescatore, J., and Garnero, L., 2001, A multiresolution framework to MEG/EEG source imaging, IEEE Trans. Biomed. Eng. 48:1080–1087.CrossRefGoogle Scholar
  34. Gencer, N. G., Ider, Y. Z., and Williamson, S. J., 1996, Electrical impedance tomography: Induced-current imaging achieved with a multiple coil system, IEEE Trans. Biomed. Eng. 43:139–149.CrossRefGoogle Scholar
  35. Gencer, N. G., and Williamson, S. J., 1998, Differential characterization of neural sources with the bimodal truncated SVD pseudo-inverse for EEG and MEG measurements, IEEE Trans. Biomed. Eng. 45:827–837.CrossRefGoogle Scholar
  36. George, J. S., Aine, C. J., Mosher, J. C., Schmidt, D. M., Ranken, D. M., Schlitt, H. A., Wood, C. C., Lewine, J. D., Sanders, J. A., and Belliveau, J. W., 1995, Mapping function in the human brain with magnetoencephalography, anatomical magnetic resonance imaging, and functional magnetic resonance imaging, J. Clin. Neurophysiol. 12:406–431.CrossRefGoogle Scholar
  37. Geselowitz, D. B., 1960, Multiple representation for an equivalent cardiac generator, Proc. IRE 48:75–79.CrossRefGoogle Scholar
  38. Gevins, A., Le, J., Martin, N. K., Brickett, P., Desmond, J., and Reutter, B., 1994, High resolution EEG: 124-channel recording, spatial deblurring and MRI integration methods, Electroencephalogr. Clin. Neurophysiol. 90:337–358.CrossRefGoogle Scholar
  39. Golub, G. H., Heath, M., and Wahba, G., 1979, Generalized cross-validation as a method for choosing a good ridge parameter, Technometrics 21:215–223.zbMATHMathSciNetCrossRefGoogle Scholar
  40. Gorodnitsky, I. F., George, J. S., and Rao, B. D., 1995, Neuromagnetic source imaging with FOCUSS: A recursive weighted minimum norm algorithm, Electroencephalogr. Clin. Neurophysiol. 95:231–251.CrossRefGoogle Scholar
  41. Gorodnitsky, I. F., and Rao, B. D., 1997, Sparse signal reconstruction from limited data using FOCUSS: A reweighted minimum norm algorithm, IEEE Trans. Signal Process. 45:600–616.CrossRefGoogle Scholar
  42. Grave de Peralta-Menendez, R., and Gonzalez-Andino, S., 1998a, A critical analysis of linear inverse solutions to the neuroelectromagnetic inverse problem, IEEE Trans. Biomed. Eng. 45:440–448.CrossRefGoogle Scholar
  43. Grave de Peralta Menendez, R., and Gonzalez-Andino, S., 1998b, Distributed source models: Standard solutions and new developments. In: Analysis of Neurophysiological Brain Functioning (C. Uhl, ed.), Springer Verlag, pp. 176–201.Google Scholar
  44. Grave de Peralta-Menendez, R., Gonzalez-Andino, S., and Lutkenhonner, B., 1996, Figures of merit to compare linear distributed inverse solutions, Brain Topogr. 9:117–124.CrossRefGoogle Scholar
  45. Grave de Peralta-Menendez, R., Gonzalez-Andino, S., Morand, S., Michel, C. M., and Landis, T., 2000, Imaging the electrical activity of the brain: ELECTRA, Hum. Brain Mapp. 9:1–12.CrossRefGoogle Scholar
  46. Grave de Peralta-Menendez, R., Hauk, O., Gonzalez-Andino, S., Vogt, H., and Michel, C., 1997, Linear inverse solutions with optimal resolution kernels applied to electromagnetic tomography, Hum. Brain Mapp. 5:454–467.CrossRefGoogle Scholar
  47. Gulrajani, R. M., 1998, Bioelectricity and Biomagnetism, John Wiley & Sons, New York.Google Scholar
  48. Gulrajani, R. M., Finke, S., and Gotman, J., 2001, Reciprocal transfer-coefficient matrices and the inverse problem of electroencephalography, Biomedizinische Technik 46(Suppl. 2):13–15.Google Scholar
  49. Hamalainen, M., and Ilmoniemi, R. J., 1984, Interpreting measured magnetic fields of the brain: Estimates of current distributions, Technical Report TKF-F-A559, Helsinki University of Technology.Google Scholar
  50. Hamalainen, M. S., and Ilmoniemi, R. J., 1994, Interpreting magnetic fields of the brain: Minimum norm estimates, Med. Biol. Eng. Comput. 32:35–42.CrossRefGoogle Scholar
  51. Hamalainen, M., and Sarvas, J., 1989, Realistic conductor geometry model of the human head for interpretation of neuromagnetic data, IEEE Trans. Biomed. Eng. 36:165–171.CrossRefGoogle Scholar
  52. Hansen, P. C., 1990, Truncated singular value decomposition solutions to discrete ill-posed problems with ill-determined numerical rank, SIAM J. Sci. Stat. Comput. 11:503–518.zbMATHCrossRefGoogle Scholar
  53. Hansen, P. C., 1992, Analysis of discrete ill-posed problems by means of the L-curve, SIAM Rev. 34:561–580.zbMATHMathSciNetCrossRefGoogle Scholar
  54. Hansen, P. C., and O’leary, D. P., 1993, The use of the L-curve in the regularization of discrete ill-posed problems, SIAM J. Sci. Comput. 14:1487–1503.zbMATHMathSciNetCrossRefGoogle Scholar
  55. He, B., 1998, High resolution source imaging of brain electrical activity, IEEE Eng. Med. Biol. Mag. 17:123–129.CrossRefGoogle Scholar
  56. He, B., 1999, Brain electric source imaging: Scalp Laplacian mapping and cortical imaging, Crit. Rev. Biomed. Eng. 27:149–188.Google Scholar
  57. He, B. (ed.), 2004, Modeling and Imaging of Bioelectrical Activity—Principles and Applications, Kluwer Academic Publishers.Google Scholar
  58. He, B., and Cohen, R. J., 1992, Body surface Laplacian ECG mapping, IEEE Trans. Biomed. Eng. 39:1179–1191.CrossRefGoogle Scholar
  59. He, B., and Lian, J., 2004, Body surface Laplacian mapping of bioelectric sources, In: Modeling and Imaging of Bioelectrical Activity–Principles and Applications (B. He, ed.), Kluwer Academic Publishers, pp. 183–212.Google Scholar
  60. He, B., Lian, J., and Li, G., 2001, High-resolution EEG: a new realistic geometry spline Laplacian estimation technique, Clin. Neurophysiol. 112:845–852.CrossRefGoogle Scholar
  61. He, B., Lian, J., Spencer, K. M., Dien, J., and Donchin, E., 2001a, A cortical potential imaging analysis of the P300 and novelty P3 components, Hum. Brain Mapp. 12:120–130.CrossRefGoogle Scholar
  62. He, B., and Musha, T., 1992, Equivalent dipole estimation of spontaneous EEG alpha activity: Two-moving dipole approach, Med. Biol. Eng. Comput. 30:324–332.CrossRefGoogle Scholar
  63. He, B., Musha, T., Okamoto, Y., Homma, S., Nakajima, Y., and Sato, T., 1987, Electrical dipole tracing in the brain by means of the boundary element method and its accuracy, IEEE Trans. Biomed. Eng. 34:406–414.CrossRefGoogle Scholar
  64. He, B., Wang, Y., Pak, S., and Ling, Y., 1996, Cortical source imaging from scalp electroencephalograms, Med. Biol. Eng. Comput. 34:257–258.CrossRefGoogle Scholar
  65. He, B., Wang, Y., and Wu, D., 1999, Estimating cortical potentials from scalp EEG’s in a realistically shaped inhomogeneous head model, IEEE Trans. Biomed. Eng. 46:1264–1268.CrossRefGoogle Scholar
  66. He, B., Yao, D., Lian, J., and Wu, D., 2002a, An equivalent current source model and Laplacian weighted minimum norm current estimates of brain electrical activity, IEEE Trans. Biomed. Eng. 49:277–288.CrossRefGoogle Scholar
  67. He, B., Zhang, X., Lian, J., Sasaki, H., Wu, D., and Towle, V. L., 2002b, Boundary element method based cortical potential imaging of somatosensory evoked potentials using subjects’ magnetic resonance images, NeuroImage 16:564–576.CrossRefGoogle Scholar
  68. He, B., Yao, D., and Lian, J., 2002c, High resolution EEG: On the cortical equivalent dipole layer imaging, Clin. Neurophysiol. 113:227–235.CrossRefGoogle Scholar
  69. Heinze, H. J., Mangun, G. R., Burchert, W., Hinrichs, H., Scholz, M., Munte, T. F., Gos, A., Scherg, M., Johannes, S., Hundeshagen, H., Gazzaniga, M. S., and Hillyard, S. A., 1994, Combined spatial and temporal imaging of brain activity during visual selective attention in humans, Nature 372:543–546.CrossRefGoogle Scholar
  70. Hess, A., Stiller, D., Kaulisch, T., Heil, P., and Scheich, H., 2000, New insights into the hemodynamic blood oxygenation level-dependent response through combination of functional magnetic resonance imaging and optical recording in gerbil barrel cortex, J. Neurosci. 20:3328–3338.Google Scholar
  71. Homma, S., Musha, T., Nakajima, Y., Okamoto, Y., Blom, S., Flink, R., Hagbarth, K. E., and Mostrom, U., 1994, Location of electric current sources in the human brain estimated by the dipole tracing method of the scalp-skull-brain (SSB) head model, Electroencephalogr. Clin. Neurophysiol. 91:374–382.CrossRefGoogle Scholar
  72. Hori, J., Aiba, M., and He, B., 2004, Spatio-temporal cortical source imaging of brain electrical activity by means of time-varying parametric projection filter, IEEE Trans. Biomed. Eng. 51:768–777.CrossRefGoogle Scholar
  73. Hori, J., and He, B., 2001, Equivalent dipole source imaging of brain electric activity by means of parametric projection filter, Ann. Biomed. Eng. 29:436–445CrossRefGoogle Scholar
  74. Hori, J., Lian, J., and He, B., 2004, Cortical potential imaging of brain electrical activity by means of parametric projection filter, Methods Info. Med. 43(1):66–69.Google Scholar
  75. Hjorth, B., 1975, An on-line transformation of EEG scalp potentials into orthogonal source derivations, Electroencephalogr. Clin. Neurophysiol. 39:526–530.CrossRefGoogle Scholar
  76. Huppertz, H. J., Hof, E., Klisch, J., Wagner, M., Lucking, C. H., and Kristeva-Feige, R., 2001, Localization of interictal delta and epileptiform EEG activity associated with focal epileptogenic brain lesions, NeuroImage 13:15–28.CrossRefGoogle Scholar
  77. Jackson, J. D., 1975, Classical Electrodynamics, 2nd ed., John Wiley & Sons, New York.zbMATHGoogle Scholar
  78. Jeffs, B., Leahy, R., and Singh, M., 1987, An evaluation of methods for neuromagnetic image reconstruction, IEEE Trans. Biomed. Eng. 34:713–723.CrossRefGoogle Scholar
  79. Jerbi, K., Mosher, J. C., Baillet, S., and Leahy, R. M., 2002, On MEG forward modelling using multipolar expansions, Phys. Med. Biol. 47(4):523–555.CrossRefGoogle Scholar
  80. Johnston, P. R., and Gulrajani, R. M., 1997, A new method for regularization parameter determination in the inverse problem of electrocardiography, IEEE Trans. Biomed. Eng. 44:19–39.CrossRefGoogle Scholar
  81. Johnston, P.R., and Gulrajani, R. M., 2000, Selecting the corner in the L-curve approach to Tikhonov regularization, IEEE Trans. Biomed. Eng. 47(9):1293–1296.CrossRefGoogle Scholar
  82. Kavanagh, R. N., Darcey, T. M., Lehmann, D., and Fender, D. H., 1978, Evaluation of methods for three-dimensional localization of electrical sources in the human brain, IEEE Trans. Biomed. Eng. 25:421–429.CrossRefGoogle Scholar
  83. Korvenoja, A., Huttunen, J., Salli, E., Pohjonen, H., Martinkauppi, S., Palva, J. M., Lauronen, L., Virtanen, J., Ilmoniemi, R. J., and Aronen, H. J., 1999, Activation of multiple cortical areas in response to somatosensory stimulation: Combined magnetoencephalographic and functional magnetic resonance imaging, Hum. Brain Mapp. 8:13–27.CrossRefGoogle Scholar
  84. Lantz, G., Michel, C. M., Pascual-Marqui, R. D., Spinelli, L., Seeck, M., Seri, S., Landis, T., and Rosen, I., 1997, Extracranial localization of intracranial interictal epileptiform activity using LORETA (low resolution electromagnetic tomography), Electroencephalogr. Clin. Neurophysiol. 102:414–422.CrossRefGoogle Scholar
  85. Law, S. K., Nunez, P. L., and Wijesinghe, R. S., 1993, High-resolution EEG using spline generated surface on spherical and ellipsoidal surfaces, IEEE Trans. Biomed. Eng. 40:145–153.CrossRefGoogle Scholar
  86. Lawson, C. L., and Hanson, R. J., 1974, Solving Least Squares Problems, Prentice-Hall, Englewood Cliffs, NJ.zbMATHGoogle Scholar
  87. Le, J., and Gevins, A., 1993, Method to reduce blur distortion from EEG’s using a realistic head model, IEEE Trans. Biomed. Eng. 40:517–528.CrossRefGoogle Scholar
  88. Lian, J., and He, B., 2001, A minimal product method and its application to cortical imaging, Brain Topogr. 13:209–217.CrossRefGoogle Scholar
  89. Lian, J., Yao, D., and He, B., 1998, A new method for implementation of regularization in cortical potential imaging, Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2155–2158.Google Scholar
  90. Liu, A. K., Belliveau, J. W., and Dale, A. M., 1998, Spatiotemporal imaging of human brain activity using fMRI constrained MEG data: Monte Carlo simulations, Proc. Natl. Acad. Sci. USA 95:8945–8950.CrossRefGoogle Scholar
  91. Magistretti, P. J., Pellerin, L., Rothman, D. L., and Shulman, R. G., 1999, Energy on demand, Science 283:496–497.CrossRefGoogle Scholar
  92. Malmivuo, J., and Plonsey, R., 1995, Bioelectromagnetism, Oxford University Press, New York.Google Scholar
  93. Mangun, G. R., Hinrichs, H., Scholz, M., Mueller-Gaertner, H. W., Herzog, H., Krause, B. J., Tellman, L., Kemma, L., and Heinze, H. J., 2001, Integrating electrophysiology and neuroimaging of spatial selective attention to simple isolated visual stimuli, Vision Res. 41:1423–1435.CrossRefGoogle Scholar
  94. Martinez, A., Anllo-Vento, L., Sereno, M. I., Frank, L. R., Buxton, R. B., Dubowitz, D. J., Wong, E. C., Hinrichs, H., Heinze, H. J., and Hillyard, S. A., 1999, Involvement of striate and extrastriate visual cortical areas in spatial attention, Nat. Neurosci. 2:364–369.CrossRefGoogle Scholar
  95. Matsuura, K., and Okabe, Y., 1995, Selective minimum-norm solution of the biomagnetic inverse problem, IEEE Trans. Biomed. Eng. 42:608–615.CrossRefGoogle Scholar
  96. Matsuura, K., and Okabe, Y., 1997, A robust reconstruction of sparse biomagnetic sources, IEEE Trans. Biomed. Eng. 44:720–726.CrossRefGoogle Scholar
  97. Meijs, J. W. H., Weier, O. W., Peters, M. J., and Van Oosterom, A., 1989, On the numerical accuracy of the boundary element method, IEEE Trans. Biomed. Eng. 36:1038–1049.CrossRefGoogle Scholar
  98. Menke, W., 1984, Geophysical Data Analysis: Discrete Inverse Theory, Academic Press, New York.Google Scholar
  99. Menon, V., Ford, J. M., Lim, K. O., Glover, G. H., and Pfefferbaum, A., 1997, Combined event-related fMRI and EEG evidence for temporal-parietal cortex activation during target detection, Neuroreport 8:3029–3037.CrossRefGoogle Scholar
  100. Miller, K., 1970, Least squares methods for ill-posed problems with a prescribed bound, SIAM J. Math. Anal. 1:52–74.zbMATHMathSciNetCrossRefGoogle Scholar
  101. Mine, S., Oka, N., Yamaura, A., and Nakajima, Y., 1998, Presurgical functional localization of primary somatosensory cortex by dipole tracing method of scalp-skull-brain head model applied to somatosory evoked potential, Electroencephalogr. Clin. Neurophysiol. 108:226–233.CrossRefGoogle Scholar
  102. Mitzdorf, U., 1985, Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena, Physiol. Rev. 65:37–100.Google Scholar
  103. Morozov, V. A., 1984, Methods for Solving Incorrectly Posed Problems, Springer-Verlag, Berlin.Google Scholar
  104. Mosher, J. C., and Leahy, R. M., 1998, Recursive MUSIC: A framework for EEG and MEG source localization, IEEE Trans. Biomed. Eng. 45:1342–1354.CrossRefGoogle Scholar
  105. Mosher, J. C., Lewis, P. S., and Leahy, R. M., 1992, Multiple dipole modeling and localization from spatiotemporal MEG data, IEEE Trans. Biomed. Eng. 39:541–557.CrossRefGoogle Scholar
  106. Mulert, C., Gallinat, J., Pascual-Marqui, R., Dorn, H., Frick, K., Schlattmann, P., Mientus, S., Herrmann, W. M., and Winterer, G., 2001, Reduced event-related current density in the anterior cingulate cortex in schizophrenia, NeuroImage 13:589–600.CrossRefGoogle Scholar
  107. Musha, T., and Okamoto, Y., 1999, Forward and inverse problems of EEG dipole localization, Crit. Rev. Biomed. Eng. 27:189–239.Google Scholar
  108. Nelder, J. A., and Mead, R., 1965, A Simplex method for function minimization, Comput. J. 7:308–313.zbMATHGoogle Scholar
  109. Northoff, G., Richter, A., Gessner, M., Schlagenhauf, F., Fell, J., Baumgart, F., Kaulisch, T., Kotter, R., Stephan, K. E., Leschinger, A., Hagner, T., Bargel, B., Witzel, T., Hinrichs, H., Bogerts, B., Scheich, H., and Heinze, H. J., 2000, Functional dissociation between medial and lateral prefrontal cortical spatiotemporal activation in negative and positive emotions: A combined fMRI/MEG study, Cereb. Cortex 10:93–107.CrossRefGoogle Scholar
  110. Nunez, P. L., 1981, Electric Field of the Brain, Oxford University Press, London.Google Scholar
  111. Nunez, P. L., 1995, Neocortical Dynamics and Human EEG Rhythms, Oxford University Press, New York.Google Scholar
  112. Nunez, P. L., and Silberstein, R. B., 2000, On the relationship of synaptic activity to macroscopic measurements: Does co-registration of EEG with fMRI make sense? Brain Topogr. 13:79–96.CrossRefGoogle Scholar
  113. Nunez, P. L., Silberstein, R. B., Cdush, P. J., Wijesinghe, R. S., Westdrop, A. F., and Srinivasan, R., 1994, A theoretical and experimental study of high resolution EEG based on surface Laplacian and cortical imaging, Electroencephalogr. Clin. Neurophysiol. 90:40–57.CrossRefGoogle Scholar
  114. Ogawa, S., Lee, T. M., Stepnoski, R., Chen, W., Zhu, X. H., and Ugurbil, K., 2000, An approach to probe some neural systems interaction by functional MRI at neural time scale down to milliseconds, Proc. Natl. Acad. Sci. USA 97:11026–11031.CrossRefGoogle Scholar
  115. Ogawa, H., and Oja, E., 1987, Projection filter, Weiner filter, and Kahunen-Loeve subspaces in digital image processing, J. Math. Anal. Appl. 114:37–51.MathSciNetGoogle Scholar
  116. Oja, E., and Ogawa, H., 1986, Parametric projection filter for image and signal restoration, IEEE Trans. Acoust. Speech, Signal Process. 34:1643–1653.CrossRefGoogle Scholar
  117. Ollikainen, J. O., Vauhkonen, M., Karjalainen, P. A., and Kaipio, J. P., 1999, Effects of local skull inhomogeneties on EEG source estimation, Med. Eng. Phys. 21:143–154.CrossRefGoogle Scholar
  118. Ollikainen, J. O., Vauhkonen, M., Karjalainen, P. A., and Kaipio, J. P., 2001, A new computational approach for cortical imaging, IEEE Trans. Med. Imag. 20:325–332.CrossRefGoogle Scholar
  119. Opitz, B., Mecklinger, A., Von Cramon, D. Y., and Kruggel, F., 1999, Combining electrophysiological and hemodynamic measures of the auditory oddball, Psychophysiology 36:142–147.CrossRefGoogle Scholar
  120. Pascual-Marqui, R. D., and Michel, C. M., 1994, LORETA (low resolution brain electromagnetic tomography): New authentic 3D functional images of the brain, ISBET Newslett. 5:4–8.Google Scholar
  121. Pascual-Marqui, R. D., Michel, C. M., and Lehmann, D., 1994, Low resolution electromagnetic tomography: A new method for localizing electrical activity in the brain, Int. J. Psychophysiol. 18:49–65.CrossRefGoogle Scholar
  122. Perrin, F., Bertrand, O., and Pernier, J., 1987, Scalp current density mapping: Value and estimation from potential data, IEEE Trans. Biomed. Eng. 34:283–288.CrossRefGoogle Scholar
  123. Phillips, J. W., Leahy, R., and Mosher, J. C., 1997b, Imaging neural activity using MEG and EEG, IEEE Eng. Med. Biol. Mag. 16:34–41.CrossRefGoogle Scholar
  124. Phillips, J. W., Leahy, R. M., Mosher, J. C., and Timsari, B., 1997a, Imaging neural electrical activity from MEG and EEG, IEEE Trans. Med. Imag. 16:338–348.CrossRefGoogle Scholar
  125. Plonsey, R., 1969, Bioelectric Phenomena, McGraw-Hill, New York.Google Scholar
  126. Roth, B. J., Ko, D., von Albertini-Carletti, I. R., Scaffidi, D., and Sato, S., 1997, Dipole localization in patients with epilepsy using the realistically shaped head model, Electroencephalogr. Clin. Neurophysiol. 102:159–166.CrossRefGoogle Scholar
  127. Rush, S., and Driscoll, D. A., 1969, EEG electrode sensitivity — an application of reciprocity, IEEE Trans. Biomed. Eng. 16:15–22.Google Scholar
  128. Scherg, M., and Von Cramon, D., 1985, Two bilateral sources of the AEP as identified by a spatio-temporal dipole model, Electroencephalogr. Clin. Neurophysiol. 62:32–44.CrossRefGoogle Scholar
  129. Sekihara, K., Nagarajan, S. S., Poeppel, D., Marantz, A., and Miyashita, Y., 2001, Reconstructing spatio-temporal activities of neural sources using an MEG vector beamformer technique, IEEE Trans. Biomed. Eng. 48:760–771.CrossRefGoogle Scholar
  130. Sekihara, K., Poeppel, D., Marantz, A., Koizumi, H., and Miyashita, Y., 1997, Noise covariance incorporated MEG-MUSIC algorithm: A method for multiple-dipole estimation tolerant of the influence of background brain activity, IEEE Trans. Biomed. Eng. 44:839–847.CrossRefGoogle Scholar
  131. Sekihara, K., and Scholz, B., 1995, Average-intensity reconstruction and Wiener reconstruction of bioelectric current distribution based on its estimated covariance matrix, IEEE Trans. Biomed. Eng. 42:149–157.CrossRefGoogle Scholar
  132. Sekihara, K., and Scholz, B., 1996, Generalized Wiener estimation of three-dimensional current distribution from magnetic measurements, IEEE Trans. Biomed. Eng. 43:281–291.CrossRefGoogle Scholar
  133. Shim, Y. S., and Cho, Z. H., 1981, SVD pseudoinversion image reconstruction, IEEE Trans. Acoust. Speech. Process. 29:904–909.CrossRefGoogle Scholar
  134. Sidman, R., Ford, M., Ramsey, G., and Schlichting, C., 1990, Age-related features of the resting and P300 auditory evoked responses using the dipole localization method and cortical imaging technique, J. Neurosci. Methods 33:22–32.CrossRefGoogle Scholar
  135. Snyder, A. Z., 1991, Dipole source localization in the study of EP generators: A critique, Electroencephalogr. Clin. Neurophysiol. 80:321–325.CrossRefGoogle Scholar
  136. Snyder, A. Z., Abdullaev, Y., Posner, M. I., and Raichle, M. E., 1995, Scalp electrical potentials reflect regional cerebral blood flow responses during processing of written words, Proc. Natl. Acad. Sci. USA 92:1689–1693.CrossRefGoogle Scholar
  137. Soong, A. C., and Koles, Z. J., 1995, Principal-component localization of the sources of the background EEG, IEEE Trans. Biomed. Eng. 42:59–67.CrossRefGoogle Scholar
  138. Spencer, K. M., Dien, J., and Donchin, E., 1999, A componential analysis of the ERP elicited by novel events using a dense electrode array, Psychophysiology 36:409–414.CrossRefGoogle Scholar
  139. Srebro, R., 1996, Iterative refinement of the minimum norm solution of the bioelectric inverse problem, IEEE Trans. Biomed. Eng. 43:547–552.CrossRefGoogle Scholar
  140. Srebro, R., and Oguz, R. M., 1997, Estimating cortical activity from VEPs with the shrinking ellipsoid inverse, Electroencephalogr. Clin. Neurophysiol. 102:343–355.CrossRefGoogle Scholar
  141. Srebro, R., Oguz, R. M., Hughlett, K., and Purdy, P. D., 1993, Estimating regional brain activity from evoked potential field on the scalp, IEEE Trans. Biomed. Eng. 40:509–516.CrossRefGoogle Scholar
  142. Stratton, J. A., 1941, Electromagnetic Theory, McGraw-Hill, New York.zbMATHGoogle Scholar
  143. Tikhonov, A. N., and Arsenin, V. Y., 1977, Solutions of Ill-Posed Problems, Wiley, New York.zbMATHGoogle Scholar
  144. Towle, V. L., Cohen, S., Alperin, N., Hoffmann, K., Cogen, P., Milton, J., Grzeszczuk, R., Pelizzari, C., Syed, I., and Spire, J. P., 1995, Displaying electrocorticographic findings on gyral anatomy, Electroencephalogr. Clin. Neurophysiol. 94:221–228.CrossRefGoogle Scholar
  145. Uutela, K., Hamalainen, M., and Somersalo, E., 1999, Visualization of magnetoencephalographic data using minimum current estimates, NeuroImage 10(2):173–180.CrossRefGoogle Scholar
  146. Van Veen, B. D., van Drongelen, W., Yuchtman, M., and Suzuki, A., 1997, Localization of brain electrical activity via linearly constrained minimum variance spatial filtering, IEEE Trans. Biomed. Eng. 44:867–880.CrossRefGoogle Scholar
  147. Vieth, J. B., Kober, H., and Grummich, P., 1996, Sources of spontaneous slow waves associated with brain lesions, localized by using the MEG, Brain Topogr. 8:215–221.CrossRefGoogle Scholar
  148. Von Helmholtz, H., 1853, Uber einige Gesetzeder Verbeitung elektrischer Strome in Koperlichen Leitern mit Anwendung auf die theorischelektrischen Versuche, Ann. Physik. U. Chem. 89:211–233, 353–377.CrossRefGoogle Scholar
  149. Waberski, T. D., Buchner, H., Lehnertz, K., Hufnagel, A., Fuchs, M., Beckmann, R., and Rienacker, A., 1998, Properties of advanced headmodelling and source reconstruction for the localization of epileptiform activity, Brain Topogr. 10:283–290.CrossRefGoogle Scholar
  150. Wang, Y., and He, B., 1998, A computer simulation study of cortical imaging from scalp potentials, IEEE Trans. Biomed. Eng. 45:724–735.CrossRefGoogle Scholar
  151. Wang, J., Zhou, T., Qiu, M., Du, A., Cai, K., Wang, Z., Zhou, C., Meng, M., Zhuo, Y., Fan, S., and Chen, L., 1999, Relationship between ventral stream for object vision and dorsal stream for spatial vision: An fMRI + ERP study, Hum. Brain Mapp. 8:170–181.CrossRefGoogle Scholar
  152. Woldorff, M. G., Fox, P. T., Matzke, M., Lancaster, J. L., Veeraswamy, S., Zamarripa, F., Seabolt, M., Glass, T., Gao, J. H., Martin, C. C., and Jerabek, P., 1997, Retinotopic organization of early visual spatial attention effects as revealed by PET and ERPs, Hum. Brain Mapp. 5:280–286.CrossRefGoogle Scholar
  153. Wong, P. K., 1991, Source modeling of the rolandic focus, Brain Topogr. 4:105–112.CrossRefGoogle Scholar
  154. Xu, X. L., Xu, B., and He, B., 2004, An alternative subspace approach to EEG dipole source localization, Phys. Med. Biol. 49(2):327–343.MathSciNetCrossRefGoogle Scholar
  155. Yao, D., and He, B., 2001, A self-coherence enhancement algorithm and its application to enhancing three-dimensional source estimation from EEGs, Ann. Biomed. Eng. 29:1019–1027.CrossRefGoogle Scholar
  156. Zhang, X., van Drongelen, W., Hecox, K., Towle, V. L., Frim, D. M., McGee, A., and He, B., 2003, High resolution EEG: Cortical potential mapping of interictal spikes, Clin. Neurophysiol. 114:1963–1973.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 2005

Authors and Affiliations

  • Bin He
    • 1
  • Jie Lian
    • 2
  1. 1.Department of Biomedical EngineeringUniversity of MinnesotaMinneapolis
  2. 2.Microsystems Engineering, Inc.USA

Personalised recommendations