Electrical Stimulation of the Neuromuscular System

  • Dominique M. Durand
  • Warren M. Grill
  • Robert Kirsch
Part of the Bioelectric Engineering book series (BEEG)


Patients with paralysis or disease of the nervous system can have severe functional deficits. Although rehabilitation and neural regeneration can provide some improvement (Grill and Kirsch, 2000; McDonald and Sadowsky, 2000), there is still a large gap to close in order to restore function. Functional electrical stimulation (FES) of neural tissue can be successfully applied to provide additional functional restoration to neurologically impaired individuals. By placing electrodes within excitable neural tissue and passing current through these electrodes, it is possible to activate pathways to the brain or to muscles. The activated pathways can then excite or inhibit their intended target. Neural prostheses refer to applications for which electrical stimulation is used to replace a previously lost or damaged neural]


Spinal Cord Injury Electrical Stimulation Functional Electrical Stimulation Volume Conductor Virtual Cathode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agnew, W. F., McCreery, D. B., Yuen, T. G., and Bullara, L. A., 1989, Histologic and physiologic evaluation of electrically stimulated peripheral nerve: Considerations for the selection of parameters, Ann. Biomed. Eng. 17(1):39–60.Google Scholar
  2. Agnew, W. F., McCreery, D. B., Yuen, T. G., and Bullara, L. A., 1990, Local anaesthetic block protects against electrically-induced damage in peripheral nerve, J. Biomed. Eng. 12:301–309.Google Scholar
  3. Altman, K. W., and Plonsey, R., 1988, Development of a model for point source electrical fibre bundle stimulation, Med. Biol. Eng. Conmput. 26:466–475.Google Scholar
  4. Andrews, B. J., Baxendale, R. H., Barnett, R., Phillips, G. F., Yamazaki, T., Paul, J. P., and Freeman, P. A., 1988, Hybrid FES orthosis incorporating closed loop control and sensory feedback, J. Biomed. Eng. 10:189–195.Google Scholar
  5. Bigland-Ritchie, B., Jones, D. A., and Woods, J. J., 1979, Excitation frequency and muscle fatigue: Electrical responses during human voluntary and stimulated contractions, Exp. Neurol. 64:414–427.Google Scholar
  6. Blaivas, J. G., 1982, The neurophysiology of micturition: A clinical study of 550 patients, J. Urol. 127:958–963.Google Scholar
  7. Brindley, G. S., 1994, The first 500 patients with sacral anterior root stimulator implants: General description, Paraplegia 32:795–805.Google Scholar
  8. Brindley, G. S., and Lewin, W. S., 1968, The sensations produced by electrical stimulation of the visual cortex, J. Physiol. 106:479–493.Google Scholar
  9. Brindley, G. S., Polkey, C. E., and Rushton, D. N., 1982, Sacral anterior root stimulators for bladder control in paraplegia, Paraplegia 20:365–381.Google Scholar
  10. Broderick, J., Brott, T., Kothari, R., Miller, R., Khoury, J., Pancioli, A., Gebel, J., Mills, D., Minneci, L., and Shukla, R., 1998, The Greater Cincinnati/Northern Kentucky Stroke Study: Preliminary first-ever and total incidence rates of strokes among blacks, Stroke 29:415–412.Google Scholar
  11. Brummer, S. B., and Turner, M. J., 1977, Electrochemical considerations for safe electrical stimulation of the nervous system with platinum electrodes, IEEE Trans. Biomed. Eng. 24:59–63.Google Scholar
  12. Burridge, J. H., Taylor, P. N., Hagan, S. A., Wood, D. E., and Swain, I. D., 1997, The effects of common peroneal stimulation on the effort and speed of walking: A randomized controlled trial with chronic hemiplegic patients, Clin. Rehabil. 11(3):201–10.Google Scholar
  13. Carter, R. R., McCreery, D. B., Woodford, B. J., Bullara, L. A., and Agnew, W. F., 1995, Micturition control by microstimulation of the sacral spinal cord of the cat: Acute studies, IEEE Trans. Rehabil. Eng. 3:206–214.Google Scholar
  14. Chai, T. C., and Steers, W. D., 1996, Neurophysiology of micturition and continence, Urol. Clin. North Am. 23:221–236.Google Scholar
  15. Clark, G. M., Tong, Y. C., and Patrick, J. F., 1990, Cochlear Prostheses, Churchill Linvingston, NY.Google Scholar
  16. Crago, P. E., Kirsch, R. F., and Triolo, R. J., 2000, Movement synthesis and regulation in neuroprostheses, In: Biomechanic and Neural Control of Movement (J. M. Winters and P. E. Crago, eds.), pp. 573–589.Google Scholar
  17. Crago, P. E., Memberg, W. D., Usey, M. K., Keith, M. W., Kirsch, R. F., Chapman, G. J., Katorgi, M. A., and Perreault, E. J., 1998, An elbow extension neuroprosthesis for individuals with tetraplegia, IEEE Trans. Rehabil. Eng. 6:1–6.Google Scholar
  18. Crago, P. E., Peckham, P. H., and Thrope, G. B., 1980, Modulation of muscle force by recruitment during intramuscular stimulation, IEEE Trans. Biomed. Eng. 27:679–684.Google Scholar
  19. Creasey, G. H., Grill, J. H., Korsten, M., U. HS, Betz, R., Anderson, R., and Walter, J., 2001, An implantable neuroprosthesis for restoring bladder and bowel control to patients with spinal cord injuries: A multicenter trial, Arch. Phys. Med. Rehabil. 82:1512–1519.Google Scholar
  20. Daly, J. J., Kollar, K., Debogorski, A. A., Strasshofer, B., Marsolais, E. B., Scheiner, A., Snyder, S., and Ruff, R. L., 2001, Performance of an intramuscular electrode during functional neuromuscular stimulation for gait training post stroke, J. Rehabil. Res. Dev. 38(5):513–526.Google Scholar
  21. Davis, J. A., Jr., Triolo, R. J., Uhlir, J. P., Bhadra, N., Lissy, D. A., Nandurkar, S., and Marsolais, E. B., 2001, Surgical technique for installing an eight-channel neuroprosthesis for standing, Clin. Orthop. (385):237–252.Google Scholar
  22. Davis, R., MacFarland, W. C., and Emmons, S. E., 1994, Initial results of the nucleus FES-22-implanted system for limb movement in paraplegia, Stereotact. Funct. Neurosurg. 63:192–197.Google Scholar
  23. de Groat, W. C., Booth, A. M., and Yoshimura, N., 1993, Neurophysiology of micturition and its modification in animal models of human disease, In: The Autonomic Nervous System, Vol. 3 (C. A. Maggi, ed.), Harwood Academic Publishers, London, pp. 227–290.Google Scholar
  24. Dostrovsky, J. O., and Lozano, A. M., 1992, Mechanisms of deep brain stimulation, Mov. Disord. 17(Suppl 3):S63–S68. [Review]Google Scholar
  25. Durand, D. M., 1995, Electrical stimulation of excitable tissue, Handbook of Biomedical Engineering, CRC Press, Boca Raton, pp. 229–251.Google Scholar
  26. Durand, D., Ferguson, A. S. F., and Dalbasti, T., 1995, Effects of surface boundary on neuronal magnetic stimulation, IEEE Trans. Biomed. Eng. 37:588–597.Google Scholar
  27. Fang, Z. P., and Mortimer, J. T., 1991, Selective activation of small motor axons by quasitrapezoidal current pulses, IEEE Trans. Biomed. Eng. 38:168–174.Google Scholar
  28. Ferguson, K. A., Polando, G., Kobetic, R., Triolo, R. J., and Marsolais, E. B., 1999, Walking with a hybrid orthosis system, Spinal Cord 37(11):800–804.Google Scholar
  29. Gallien, P., Robineau, S., Nicolas, B., Le Bot, M. P., Brissot, R., and Verin, M., 1998, Vesicourethral dysfunction and urodynamic findings in multiple sclerosis: A study of 149 cases, Arch. Phys. Med. Rehabil. 79:255–257.Google Scholar
  30. George, M. S., Nahas, Z., Bohning, D. E., Kozel, F. A., Anderson, B., Chae, J. H., Lomarev, M., Denslow, S., Li, X., and Mu, C., 2002, Vagus nerve stimulation therapy: A research update, Neurology 59(6 Suppl. 3):S56–S61.Google Scholar
  31. Glenn, W. W., Hogen, J. F., Coke, J. S., Ciesieski, T. E., Phelps, M. L., Roweder, R., 1984, Ventilatory support by pacing the conditioned diaphragm in quadriplegia, N. Engl. J. Med. 3(310):1550–1555.Google Scholar
  32. Gorman, P. H., and Mortimer, J. T., 1983, The effect of stimulus parameters on the recruitment characteristics of direct nerve stimulation, IEEE Trans. Biomed. Eng. 30:407–414.Google Scholar
  33. Grandjean, P. A., and Mortimer, J. T., 1986, Recruitment properties of monopolar and bipolar epimysial electrodes, Ann. Biomed. Eng. 14:53–66.Google Scholar
  34. Graupe, D., and Kohn, K. H., 1997, Transcutaneous functional neuromuscular stimulation of certain traumatic complete thoracic paraplegics for independent short-distance ambulation, Neurol. Res. 19:323–333.Google Scholar
  35. Grill, J. H., and Peckham, P. H., 1998, Functional neuromuscular stimulation for combined control of elbow extension and hand grasp in C5 and C6 quadriplegics, IEEE Trans. Rehabil. Eng. 6:190–199.Google Scholar
  36. Grill, W. M., Bhadra, N., and Wang, B., 1999, Bladder and urethral pressures evoked by microstimulation of the sacral spinal cord in cats, Brain Res. 836:19–30.Google Scholar
  37. Grill, W. M., Craggs, M., Foreman, R., Ludlow, C., and Buller, J., 2001, Emerging clinical applications of electrical stimulation: Opportunities for restoration of function, J. Rehabil. Res. Devel. 38(6):641–653.Google Scholar
  38. Grill, W. M., and Kirsch, R. F., 1999, Neuroprosthetic applications of electrical stimulation, IEEE Trans. Rehabil. Eng. 7(2):150–158.Google Scholar
  39. Grill, W. M., and Kirsch, R. F., 2000, Neuroprosthetic applications of electrical stimulation, Assist. Technol. 12:6–20.Google Scholar
  40. Grill, W. M., and Mortimer, J. T., 1996a, Effect of stimulus pulse duration on selectivity of neural stimulation, IEEE Trans. Biomed. Eng. 43:161–166.Google Scholar
  41. Grill, W. M., and Mortimer, J. T., 1996b, Quantification of recruitment properties of multiple contact cuff electrodes, IEEE Trans. Rehabil. Eng. 4:49–62.Google Scholar
  42. Grill, W. M., and Mortimer, J. T., 1997, Inversion of the current distance relationship by transient depolarization, IEEE Trans. Biomed. Eng. 44(1):1–9.Google Scholar
  43. Hambrecht, F. T., 1979, Neural prostheses, Annu. Rev. Biophys. Bioeng. 8:239–267.Google Scholar
  44. Handa, Y., Handa, T., Ichie, M., Murakami, H., Hoshimiya, N., Ishikawa, S., and Ohkubo, K., 1992, Functional electrical stimulation (FES) systems for restoration of motor function of paralyzed muscles—versatile systems and a portable system, Front. Med. Biol. Eng. 4:241–255.Google Scholar
  45. Handa, Y., Yagi, R., and Hoshimiya, N., 1998, Application of functional electrical stimulation to the paralyzed extremities, Neurol. Med. Chir. (Tokyo) 38(11):784–788.Google Scholar
  46. Handa, Y., Handa, T., and Nakatsuchi, Y., 1985, A voice controlled functional electrical stimulation system for the paralyzed hand, Jpn. J. Med. Electron. Biol. Eng. 25:292–298.Google Scholar
  47. Hart, R. L., Kilgore, K. L., and Peckham, P. H., 1998, A comparison between control methods for implanted FES hand-grasp systems, IEEE Trans. Rehabil. Eng. 6(2):208–218.Google Scholar
  48. Harvey, C., Rothschild, R., Asmann, A., and Stripling, T., 1990, New estimates of traumatic SCI prevalence: A survey-based approach, Paraplegia 28:537–544.Google Scholar
  49. Hines, M., 1984, Efficient computation of branched nerve equations, Int. J. Biol. Med. Comp. 15:69–76.Google Scholar
  50. Hodgkin, A. L., and Huxley, A. F., 1954, The dual effect of membrane potential on sodium conductance in the giant axon of Loligo, J. Physiol. 116:497–506.Google Scholar
  51. Hoshimiya, N., Naito, A., Yajima, M., and Handa, Y., 1989, A multichannel FES system for the restoration of motor functions in high spinal cord injury patients: A respiration-controlled system for multijoint upper extremity, IEEE Trans. Biomed. Eng. 36(7):754–760.Google Scholar
  52. Jezernik, S., Craggs, M., Grill, W. M., Creasey, G. H., and Rijkhoff, N. J. M., 2002, Electrical stimulation for treatment of bladder dysfunction: Current status and future possibilities, Neurol. Res. 24:413–430.Google Scholar
  53. Johnson, M. W., and Peckham, P. H., 1990, Evaluation of shoulder movement as a command control source, IEEE Trans. Biomed. Eng. 37(9):876–885.Google Scholar
  54. Kameyama, J., Handa, Y., Hoshimiya, N., and Sakurai, M., 1999, Restoration of shoulder movement in quadriplegic and hemiplegic patients by functional electrical stimulation using percutaneous multiple electrodes, Tohoku J. Exp. Med. 187(4):329–337.Google Scholar
  55. Keith, M. W., Kilgore, K. L., Peckham, P. H., Wuolle, K. S., Creasey, G., and Lemay, M., 1996, Tendon transfers and functional electrical stimulation for restoration of hand function in spinal cord injury, Hand. Surg. (Am.) 21:89–99.Google Scholar
  56. Keith, M. W., and Lacey, S. H., 1991, Surgical rehabilitation of the tetraplegic upper extremity, J. Neurol. Rehabil., 75–87.Google Scholar
  57. Keith, M. W., Peckham, P. H., Thrope, G. B., Buckett, J. R., Stroh, K. C., and Menger, V., 1988, Functional neuro-muscular stimulation neuroprostheses for the tetraplegic hand, Clin. Orthop. 233:25–33.Google Scholar
  58. Keith, M. W., Peckham, P. H., Thrope, G. B., Stroh, K. C., Smith, B., Buckett, J. R., Kilgore, K. L., and Jatich, J. W., 1989, Implantable functional neuromuscular stimulation in the tetraplegic hand, J. Hand Surg. (Am.) 14(3):524–530.Google Scholar
  59. Kern, H., Hofer, C., Modlin, M., Forstner, C., Raschka-Hogler, D., Mayr, W., and Stohr, H., 2002, Denervated muscles in humans: Limitations and problems of currently used functional electrical stimulation training protocols, Artif. Organs 26(3):216–218.Google Scholar
  60. Kern, H., Hofer, C., Strohhofer, M., Mayr, W., Richter, W., and Stohr, H., 1999, Standing up with denervated muscles in humans using functional electrical stimulation, Artif. Organs 23(5):447–452.Google Scholar
  61. Kilgore, K. L., and Peckham, P. H., 1993a, Grasp synthesis for upper-extremity FNS. Part 2. Evaluation of the influence of electrode recruitment properties, Med. Biol. Eng. Comput. 31(6):615–622.Google Scholar
  62. Kilgore, K. L., and Peckham, P. H., 1993b, Grasp synthesis for upper-extremity FNS. Part 1. Automated method for synthesising the stimulus map, Med. Biol. Eng. Comput. 31(6):607–614.Google Scholar
  63. Kilgore, K. L., Peckham, P. H., and Keith, M. W., 1990, Electrode characterization for functional application to upper extremity FNS, IEEE Trans. Biomed. Eng. 37:12–21.Google Scholar
  64. Kilgore, K. L., Peckham, P. H., Keith, M. W., Thrope, G. B., Wuolle, K. S., Bryden, A. M., and Hart, R. L., 1997, An implanted upper-extremity neuroprosthesis. Follow-up of five patients, J. Bone Joint Surg. Am. 79(4):533–541.Google Scholar
  65. Kirsch, R. F., Acosta, A. M., Yu, D., and Keith, M. W., 1998, Feasibility of restoring shoulder and elbow function in high tetraplegia by functional neuromuscular stimulation, in: 20th Annual International Conference IEEE Engineering in Medicine and Biology Society, October 1998.Google Scholar
  66. Kljajic, M., Malezic, M., Acimovic, R., Vavken, E., Stanic, U., Pangrsic, B., and Rozman, J., 1992, Gait evaluation in hemiparetic patients using subcutaneous peroneal electrical stimulation, Scand. J. Rehabil. Med. 24:121–126.Google Scholar
  67. Kobetic, R., Triolo, R. J., and Marsolais, E. B., 1997, Muscle selection and walking performance of multichannel FES systems for ambulation in paraplegia, IEEE Trans. Rehabil. Eng. 5:23–29.Google Scholar
  68. Koch, C., and Segev, I., 1989, Methods in Neural Modelling, MIT Press.Google Scholar
  69. Kralj, A., Acimovic, R., and Stanic, U., 1993a, Enhancement of hemiplegic patient rehabilitation by means of functional electrical stimulation, Prosthet. Orthot. Int. 17:107–114.Google Scholar
  70. Kralj, A., and Bajd, T., 1989, Functional Electrical Stimulation: Standing and Walking After Spinal Cord Injury, CRC Press, Boca Raton, FL.Google Scholar
  71. Kralj, A. R., Bajd, T., Munih, M., and Turk, R., 1993b, FES gait restoration and balance control in spinal cordinjured patients, Prog. Brain Res. 97:387–396.Google Scholar
  72. Lauer, R. T., Kilgore, K. L., Peckham, P. H., Bhadra, N., and Keith, M. W., 1999, The function of the finger intrinsic muscles in response to electrical stimulation, IEEE Trans. Rehabil. Eng. 7:19–26.Google Scholar
  73. Lee, Y. H., and Creasey, G. H., 2002, Self-controlled dorsal penile nerve stimulation to inhibit bladder hyperreflexia in incomplete spinal cord injury: A case report, Arch. Phys. Med. Rehabil. 83(2):273–277.Google Scholar
  74. Lemay, M. A., and Crago, P. E., 1997, Closed-loop wrist stabilization in C4 and C5 tetraplegia, IEEE Trans. Rehabil. Eng. 5:244–252.Google Scholar
  75. Lemay, M. A., Crago, P. E., and Keith, M. W., 1996, Restoration of pronosupination control by FNS in tetraplegia—experimental and biomechanical evaluation of feasibility, J. Biomech. 29:435–442.Google Scholar
  76. Lilly, J. C., Hughes, J. R., Alvord, E. C., and Galkin, T. W., 1955, Brief noninjurious electric wave form for stimulation of the brain, Science 121:468–469.Google Scholar
  77. Margalit, E., Maia, M., Weiland, J., Greenberg, R., Fujii, G., Torres, G., Piyathaisere, D., O’Hearn, T., Liu, W., Lazzi, G., Dagnelie, G., Scribner, D., de Juan, E., and Humayun, M., 2002, Retinal prosthesis for the blind, Urv Ophthalmol. 47(4):335.Google Scholar
  78. Marsolais, E. B., and Kobetic, R., 1986, Implantation techniques and experience with percutaneous intramuscular electrodes in the lower extremities, J. Rehabil. Res. Dev. 23:1–8.Google Scholar
  79. Marsolais, E. B., and Kobetic, R., 1988, Development of a practical electrical stimulation system for restoring gait in the paralyzed patient, Clin. Ortho. Rel. Res. 233:64–74.Google Scholar
  80. Marsolais, E. B., Kobetic, R., Polando, G., Ferguson, K., Tashman, S., Gaudio, R., Nandurkar, S., and Lehneis, H. R., 2000, The Case Western Reserve University hybrid gait orthosis, J. Spinal Cord Med. 23(2):100–108.Google Scholar
  81. McCreery, D. B., Agnew, W. F., Yuen, T. G. H., and Bullara, L. A., 1988, Comparison of neural damage induced by electrical stimulation with faradaic and capacitor electrodes, Annu. Biomed. Eng. 16:463–481.Google Scholar
  82. McCreery, D. B., Agnew, W. F., Yuen, T. G., and Bullara, L., 1990, Charge density and charge per phase as cofactors in neural injury induced by electrical stimulation, IEEE Trans. Biomed. Eng. 37(10):996–1001.Google Scholar
  83. McCreery, D. B, Agnew, W. F., Yuen, T. G., and Bullara, L. A., 1995, Relationship between stimulus amplitude, stimulus frequency and neural damage during electrical stimulation of sciatic nerve of cat, Med. Biol. Eng. Comput. 33 (3 Spec No):426–429.Google Scholar
  84. McDonald, J. W., and Sadowsky, C., 2002, Spinal cord injury, Lancet 359(9304):417–425.Google Scholar
  85. McHardy, J., Geller, D., and Brummer, S. B., 1977, An approach to corrosion control during electrical stimulation, Annu. Biomed. Eng. 5:144–149.Google Scholar
  86. McIntyre, C. C., and Grill, W. M., 1999, Excitation of central nervous system neurons by non-uniform fields, Biophys. J. 76:878–888.Google Scholar
  87. McNeal, D., 1973, Peripheral nerve stimulation—superficial and implanted, in: Neural Organization and its Relevance to Prosthetics (W. S. Fields and L. A. Leavitt, eds.), Intercontinental Medical Book Corp, New York.Google Scholar
  88. McNeal, D. R., 1976, Analysis of a model for excitation of myelinated nerve, IEEE Trans. BME 23:329–337.Google Scholar
  89. McNeal, D. R., Baker, L. L., and Symons, J. T., 1989, Recruitment data for nerve cuff electrodes: Implications for design of implantable stimulators, IEEE Trans. Biomed. Eng. 36:301–308.Google Scholar
  90. McNeal, D. R., and Bowman, B. R., 1985, Selective activation of muscles using peripheral nerve electrodes, Med. Biol. Eng. Comp. 23:249–253.Google Scholar
  91. Memberg, W., Peckham, P. H., Thrope, G., Keith, M., and Kicher, T., 1993, An analysis of the reliability of percutaneous intramuscular electrodes in upper extremit FNS applications, IEEE Trans. Rehabil. Eng. 1(2):1–8.Google Scholar
  92. Mortimer, J. T., 1990, Electrical excitation of nerve, In: Neural Prostheses: Fundamental Studies (W. F. Agnew and D. B. McCreery, eds.), Prentice-Hall, Englewood Cliffs, NJ, 1990, pp. 67–84.Google Scholar
  93. Mortimer, J. T., and Peckham, P. H., 1973, Intramuscular electrical stimulation, In: Neural Organization and Its Relevance to Prosthetics (W. S. Fields and L. A. Leavitt, eds.), Intercontinental Medical Book Corp., New York, pp. 77–99.Google Scholar
  94. Mushahwar, V. K., Collins, D. F., and Prochazka, A., 2000, Spinal cord microstimulation generates functional limb movements in chronically implanted cats, Exp. Neurol. 163(2):422–429.Google Scholar
  95. Nagarajan, S. S., Durand, D., and Warman, E. N., 1993, Effects of induced electric fields on finite neuronal structures: A simulation study, IEEE Trans. Biomed. Eng. 40:1175–1188.Google Scholar
  96. Nashold, B. S., Friedman, H., and Grimes, J., 1982, Electrical stimulation of the conus medullaris to control bladder emptying in paraplegia: A ten-year review, Appl. Neurophysiol. 45:40–43.Google Scholar
  97. Nathan, R. H., 1993, Control strategies in FNS systems for the upper extremities, CRC Crit. Rev. Biomed. Eng. 21:485–568.Google Scholar
  98. Nunez, P. L., 1981, Electric Fields in the Brain, The Neurophysics of EEG, Oxford University Press, New York.Google Scholar
  99. Peckham, P. H., and Keith, M. W., 1992, Motor prostheses for restoration of upper extremity function, In: Neural Prostheses: Replacing Motor Function After Disease or Disability (R. B. Stein, P. H. Peckham, and D. B. Popovic, eds.), Oxford University Press, New York, pp. 162–187.Google Scholar
  100. Peckham, P. H., Marsolais, E. B., and Mortimer, J. T., 1980, Restoration of key grip and release in the C6 tetraplegic patient through functional electrical stimulation, J. Hand Surg. (Am) 5(5):462–469.Google Scholar
  101. Plonsey, R., 1969, Bioelectric Phenomena, McGraw-Hill Series in Bioengineering.Google Scholar
  102. Prochazka, A., Gauthier, M., Wieler, M., and Kenwell, Z., 1997, The bionic glove: An electrical stimulator garment that provides controlled grasp and hand opening in quadriplegia, Arch. Phys. Med. Rehabil. 78:608–614.Google Scholar
  103. Prochazka, A., Mushahwar, V., and Yakovenko, S., 2002, Activation and coordination of spinal motoneuron pools after spinal cord injury, Prog. Brain Res. 137:109–124.Google Scholar
  104. Rall, W., 1979, Core conductor theory and cable properties of neurons, In: Handbook of Physiology—The Nervous System I, Bethesda, MD, Chapt. 3, pp. 39–96.Google Scholar
  105. Ranck, J. B., 1975, Which elements are excited in electrical stimulation of mammalian central nervous system: A review, Brain Res. 98:417–440.Google Scholar
  106. Rattay, F., 1989, Analysis of models for extracellular fiber stimulation, IEEE Trans. Biomed. Eng. 36:676–681.Google Scholar
  107. Rattay, F., 1990, Electrical Nerve Stimulation, Theory, Experiments and Applications, Springer-Verlag, Wien.Google Scholar
  108. Rijkhoff, N. J., Wijkstra, H., van Kerrebroeck, P. E., and Debruyne, F. M., 1997a, Urinary bladder control by electrical stimulation: Review of electrical stimulation techniques in spinal cord injury, Neurourol. Urodyn. 16:39–53.Google Scholar
  109. Rijkhoff, N. J., Wijkstra, H., van Kerrebroeck, P. E., and Debruyne, F. M., 1997b, Selective detrusor activation by electrical sacral nerve root stimulation in spinal cord injury, J. Urol. 157:1504–1508.Google Scholar
  110. Robblee, L. S., and Rose, T. L., 1990, Electrochemical guidelines for selection of protocols and electrode materials for neural stimulation, In: Neural Prostheses: Fundamental Studies (W. F. Agnew and D. B. McCreery, eds.), Prentice-Hall, Englewood Cliffs, NJ, pp. 25–66.Google Scholar
  111. Roth, B. J., and Basser, P. J., 1990, A model for stimulation of a nerve fiber by electromagnetic induction, IEEE Trans. Biomed. Eng. 37:588–597.Google Scholar
  112. Rushton, D. N., Donaldson, N. D., Barr, F. M., Harper, V. J., Perkins, T. A., Taylor, P. N., and Tromans, A. M., 1997, Lumbar root stimulation for restoring leg function: Results in paraplegia, Artif. Organs 21:180–182.Google Scholar
  113. Rutecki, P., 1990, Anatomical, physiological and theoretical basis for the antiepileptic effects of vagus nerve stimulation, Epilepsia 31(Suppl. 2):S1–S6.Google Scholar
  114. Sakakibara, R., Hattori, T., Yasuda K, and Yamanishi, T., 1996, Micturitional disturbances and the pontine tegmental lesion: Urodynamic and MRI analyses of vascular cases, J. Neurol. Sci. 141:105–110.Google Scholar
  115. Scheiner, A., Mortimer, J. T., and Roessmann, U., 1990, Imbalanced biphasic electrical stimulation: Muscle tissue damage, Annu. Biomed. Eng. 18(4):407–425.Google Scholar
  116. Scheiner, A., Polando, G., and Marsolais, E. B., 1994, Design and clinical application of a double helix electrode for functional electrical stimulation, IEEE Trans. Biomed. Eng. 41(5):425–431.Google Scholar
  117. Schmit, B. D., and Mortimer, J. T., 1999, The effects of epimysial electrode location on phrenic nerve recruitment and the relation between tidal volume and interpulse interval.Google Scholar
  118. Scott, T. R., Peckham, P. H., and Kilgore, K. L., 1996, Tri-state myoelectric control of bilateral upper extremity neuroprostheses for tetraplegic individuals, IEEE Trans. Rehabil. Eng. 4:251–263.Google Scholar
  119. Shefchyk, S. J., and Buss, R. R., 1998, Urethral pudendal afferent-evoked bladder and sphincter reflexes in decerebrate and acute spinal cats, Neurosci. Lett. 244:137–140.Google Scholar
  120. Smith, B., Peckham, P. H., Keith, M. W., and Roscoe, D. D., 1987, An externally powered, multichannel, implantable stimulator for versatile control of paralyzed muscle, IEEE Trans. Biomed. Eng. 34:499–508.Google Scholar
  121. Solomonow, M., Aguilar, E., Reisin, E., Baratta, R. V., Best, R., Coetzee, T., and D’Ambrosia, R., 1997, Reciprocating gait orthosis powered with electrical muscle stimulation (RGOII). Part I: Performance evaluation of 70 paraplegic patients, Orthopedics 20:315–324.Google Scholar
  122. Stover, S. L., and Fine, P. R., 1986, Spinal Cord Injury: The Facts and Figures, The University of Alabama at Birmingham, Birmingham.Google Scholar
  123. Strojnik, P., Acimovic, R., Vavken, E., Simic, V., and Stanic, U., 1987, Treatment of drop foot using an implantable peroneal underknee stimulator, Scand. J. Rehabil. Med. 19:37–43.Google Scholar
  124. Taylor, P. N., Burridge, J. H., Dunkerley, A. L., Wood, D. E., Norton, J. A., Singleton, C., and Swain, I. D., 1999, Clinical use of the Odstock dropped foot stimulator: Its effect on the speed and effort of walking, Arch. Phys. Med. Rehabil. 80(12):1577–1583.Google Scholar
  125. Triolo, R. J., Bieri, C., Uhlir, J., Kobetic, R., Scheiner, A., and Marsolais, E. B., 1996a, Implanted functional neuromuscular stimulation systems for individuals with cervical spinal cord injuries: Clinical case reports, Arch. Phys. Med. Rehabil. 77:1119–1128.Google Scholar
  126. Triolo, R. J., Liu, M. Q., Kobetic, R., and Uhlir, J. P., 2001, Selectivity of intramuscular stimulating electrodes in the lower limbs, J. Rehabil. Res. Dev. 38(5):533–544.Google Scholar
  127. Triolo, R. J., Nathan, R., Handa, Y., Keith, M. W., Betz, R. R., Carroll, S., and Kantor, C., 1996b, Challenges to clinical deployment of upper limb neural prostheses, J. Rehabil. Res. Dev. 33:11–122.Google Scholar
  128. Uhlir, J. P., Triolo, R. J., and Davis, J. A., 2001, The effect of stimulated trunk extension on the upright body weight distribution while standing with functional neuromuscular stimulation, J. Spinal Cord Med. 24:S7.Google Scholar
  129. van den Honert, C. H., and Mortimer, J. T., 1979, The response of the myelinated nerve fiber to short duration biphasic stimulating currents, Ann. Biomed. Eng. 7:117–125.Google Scholar
  130. Warman, E. N., Grill, W. M., and Durand, D., 1992, Modeling the effects of electric fields on nerve fibers: Determination of excitation thresholds, IEEE Trans. Biomed. Eng. 39(12):1244–1254.Google Scholar
  131. Watanabe, T., Rivas, D. A., and Chancellor, M. B., 1996, Urodynamics of spinal cord injury, Urol. Clin. North Am. 23:459–473.Google Scholar
  132. Wheeler, J. S., Walter, J. S., and Cai, W., 1993, Electrical stimulation for urinary incontinence, Crit. Rev. Phys. Rehabil. Med. 5:31–55.Google Scholar
  133. Yu, D. T., Kirsch, R. F., Bryden, A. M., Memberg, W. D., and Acosta, A. M., 2001, A neuroprosthesis for high tetraplegia, J. Spinal Cord Med. 24:109–113.Google Scholar
  134. Yuen, T. G. H., Agnew, W. F., Bullara, L. A., and McCreery, D. B., 1990, Biocompatibility of electrodes and materials in the central nervous system, In: Neural Prostheses: Fundamental Studies (W. F. Agnew and D. B. McCreery, eds.), Prentice-Hall, Englewood Cliffs, NJ, pp. 197–224.Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 2005

Authors and Affiliations

  • Dominique M. Durand
    • 3
  • Warren M. Grill
    • 2
  • Robert Kirsch
    • 1
  1. 1.Neural Engineering Center, FES Center, Department of Biomedical EngineeringCase Western Reserve UniversityCleveland
  2. 2.Department of Biomedical EngineeringDuke UniversityDurham
  3. 3.Neural Engineering Center, Department of Biomedical EngineeringCase Western Reserve UniversityCleveland

Personalised recommendations