Skip to main content

Brain—Computer Interface

  • Chapter
Neural Engineering

Part of the book series: Bioelectric Engineering ((BEEG))

Abstract

Human-computer interfaces (HCIs) have become ubiquitous. Interfaces such as keyboards and mouses are used daily while interacting with computing devices (Ebrahimi et al., 2003). There is a developing need, however, for HCIs that can be used in situations where these typical interfaces are not viable. Direct brain-computer interfaces (BCI) is a developing field that has been adding this new dimension of functionality to HCI. BCI has created a novel communication channel, especially for those users who are unable to generate necessary muscular movements to use typical HCI devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Annett, J., 1995, Motor imagery: Perception or action, Neuropsychologia 33(11):1395–1417.

    Article  Google Scholar 

  • Babiloni, F., Babiloni, C., Carducci, F., Fattorini, L., Onorati, P., and Urbano, A., 1996, Spline Laplacian estimate of EEG potentials over a realistic magnetic resonance-constructed scalp surface model, Electroencephalogr. Clin. Neurophysiol. 98(4):363–73.

    Article  Google Scholar 

  • Babiloni, F., Babiloni, C., Carducci, F., Fattorini, L., Anello, C., Onarati, P., and Urbano, A., 1997, High resolution EEG: A new model-dependent spatial deblurring method using a realistically—shaped MR—constructed subject’s head model, Electroenceph. Clin. Neurophysiol. 102:69–80.

    Article  Google Scholar 

  • Babiloni, F., Carducci, F., Babiloni, C., and Urbano, A., 1998, Improved realistic Laplacian estimate of highly-sampled EEG potentials by regularization techniques, Electroencephalogr. Clin. Neurophysiol. 106(4):336–343.

    Article  Google Scholar 

  • Babiloni F., Cincotti, F., Bianchi, L., Pirri, G., Millan, J., Mourino, J., Salinari, S., and Marciani, M. G., 2001, Recognition of imagined hand movements with low resolution surface Laplacian and linear classifiers, Med. Eng. Phys. 23:323–328.

    Article  Google Scholar 

  • Babiloni, F., Cincotti, F., Lazzarini, L., Millán, J., Mouriño, J., Varsta, M., Heikkonen, J., Bianchi, L., and Marciani, M. G., 2000, Linear classification of low-resolution EEG patterns produced by imagined hand movements, IEEE Trans. Rehabil. Eng. 8(2):186–188.

    Article  Google Scholar 

  • Bianchi, L., and Babiloni, F., 2003, Comparison of different feature classifiers for brain computer inerfaces, Proc. 1st Int. IEEE Conf. Neural Eng. 645–647.

    Google Scholar 

  • Birbaumer, N., 1999, Rain Man’s revelations, Nature 399(6733):211–212.

    Article  Google Scholar 

  • Birbaumer, N., Ghanayim, N., Hinterberger, T., Iversen, I., Kotchoubey, B., Kübler, A., Perelmouter, J., Taub, E., and Flor, H., 1999, A spelling device for the paralysed, Nature 398(6725):297–298.

    Article  Google Scholar 

  • Birbaumer, N., Kübler, A., Ghanayim, N., Hinterberger, T., Perelmouter, J., Kaiser, J., Iversen, I., Kotchoubey, B., Neumann, N., and Flor, H., 2000, The Thought Translation Device (TTD) for completely paralyzed patients, IEEE Trans. Rehabil. Eng. 8(2):190–193.

    Article  Google Scholar 

  • Birch, G. E., and Mason, S. G., 2000, Brain-computer interface research at the Neil Squire Foundation, IEEE Trans. Rehabil. Eng. 8(2):193–195.

    Article  Google Scholar 

  • Blankertz, B., Curio, G., and Müller, K., 2002, Classifying single trial EEG: Towards brain computer interfacing, Adv. Neural Inf. Proc. Systems 14:157–164.

    Google Scholar 

  • Blum, A. L., and Langely, P., 1997, Selection of relevant features and examples in machine learning, Artif. Intell. 97:245–271.

    Article  MATH  Google Scholar 

  • Brouwer, B., and Hopkins-Rosseel, D., 1997, Motor cortical mapping of proximal upper extremity muscles following spinal cord injury, Spinal Cord 35:205–212.

    Article  Google Scholar 

  • Cincotti, F., Mattia, D., Babiloni, C., Carducci, F., Bianchi, L., Millan, J., Mourino, J., Salinari, S., Marciani, M., and Babiloni F., 2002, Classification of EEG mental patterns by using two scalp electrodes and Mahalanobis distance based classifiers, Method Inform. Med. 41:337–341.

    Google Scholar 

  • Cincotti, F., Scipione, A., Timperi, A., Mattia, D., Marciani, M. G., Millan, J., Salimari, S., Bianchi, L., and Babiloni, F., 2003, Comparison of different feature classifiers for brain computer interfaces, Proc. 1st Int. IEEE EMBS Conf. Neural Eng. 645–647.

    Google Scholar 

  • Curran, E. A., and Stokes, M. J., 2003, Learning to control brain activity: A review of the production and control of EEG components for driving brain-computer interface (BCI) systems, Brain Cognition 51:326–336.

    Article  Google Scholar 

  • Deng, J., and He, B., 2003, Classification of imaginary tasks from three channels of EEG by using an artificial neural network, Proc. 25th Ann. Int. Conf. IEEE EMBS. [CD-ROM]

    Google Scholar 

  • Donchin, E., and Coles, M. G. H., 1988, Is the P300 component a manifestation of context updating? Behav. Brain Sci. 11:355–425.

    Google Scholar 

  • Donchin, E., Spencer, K. M., and Wijesinghe, R., 2000, The mental prosthesis: Assessing the speed of a P300-based brain-computer interface, IEEE Trans. Rehabil. Eng. 8(2):174–179.

    Article  Google Scholar 

  • Donoghue, J., 2002, Connecting cortex to machines: Recent advances in brain interfaces, Nature Neurosci. Suppl:1085–1088.

    Google Scholar 

  • Ebrahimi, T., Vesin, J., and Garcia, G., 2003, Brain-computer interface in multimedia communication, Signal Process. Mag. 20(1):14–24.

    Article  Google Scholar 

  • Farwell, L. A., and Donchin, E., 1988, Talking off the top of your head: Toward a mental prosthesis utilizing event-related brain potentials, Electroencephalogr. Clin. Neurophysiol. 70(6):510–523.

    Article  Google Scholar 

  • He, B., 1999, Brain electric source imaging: Scalp Laplacian mapping and cortical imaging, Crit. Rev. Biomed. Eng. 27:149–188.

    Google Scholar 

  • He, B., and Cohen, R., 1992, Body surface Laplacian ECG mapping, IEEE Trans. Biomed. Eng. 39(11):1179–1191.

    Article  Google Scholar 

  • He, B., Lain, J., and Li, G., 2001, High-resolution EEG: A new realistic geometry spline Laplacian estimation technique, Clin. Neurophysiol. 112(5):845–852.

    Article  Google Scholar 

  • He, B., and Lian, J., 2002, Spatio-temporal Functional Neuroimaging of Brain Electric Activity, Critical Review of Biomedical Engineering, 30:283–306.

    Article  Google Scholar 

  • He, B., and Lian, J., 2005, Electrophysiological Neuroimaging, In He (Ed): Neural Engineering, Kluwer Academic Publishers.

    Google Scholar 

  • He, B., Lian, J., Spencer, K. M., Dien, J., and Donchin, E., 2001, A Cortical Potential Imaging Analysis of the P300 and Novelty P3 Components, Human Brain Mapping, 12:120–130.

    Article  Google Scholar 

  • He, B., Zhang, X., Lian, J., Sasaki, H., Wu, S., and Towle, V. L., 2002a, Boundary Element Method Based Cortical Potential Imaging of Somatosensory Evoked Potentials Using Subjects’ Magnetic Resonance Images, NeuroImage 16:564–576.

    Article  Google Scholar 

  • He, B., Yao, D., Lian, J., and Wu, D., 2002b, An Equivalent Current Source Model and Laplacian Weighted Minimum Norm Current Estimates of Brain Electrical Activity, IEEE Trans. on Biomedical Engineering 49:277–288.

    Article  Google Scholar 

  • Hjorth, B., 1975, An on-line transformation of EEG scalp potentials into orthogonal source derivations, Electroencephalogr. Clin. Neurophysiol. 39(5):526–530.

    Article  Google Scholar 

  • Isaacs, R. E., Weber, D. J., and Schwartz, A. B., 2000, Work toward real-time control of a cortical neural prosthesis, IEEE Trans. Rehabil. Eng. 8(2):196–198.

    Article  Google Scholar 

  • Jeannerod, M., 1995, Mental imagery in the motor context, Neuropsychologia 33(11):1419–1432.

    Article  Google Scholar 

  • Kalcher, J., and Pfurtscheller, G., 1995, Discrimination between phase-locked and non-phase locked event-related EEG activity, Electroencephalogr. Clin. Neurophysiol. 94:381–384.

    Article  Google Scholar 

  • Keirn, Z. A., and Aunon, J. I., 1990, A new mode of communication between man and his surroundings, IEEE Trans. Biomed. Eng. 37(12):1209–1214.

    Article  Google Scholar 

  • Kelly, S., Burke, D., de Chazal, P., and Reilly, R., 2002, Parametric models and spectral analysis for classification in brain-computer interfaces, Proc. 14th Int. Conf. Digit. Sign. Process. 1:307–310.

    Google Scholar 

  • Kennedy, P. R., and Bakay, R. A., 1998, Restoration of neural output from a paralyzed patient by a direct brain connection, NeuroReport 9:1707–1711.

    Article  Google Scholar 

  • Kennedy, P. R., Bakay, R. A. E., Moore, M. M., Adams, K., and Goldwaithe, J., 2000, Direct control of a computer from the human central nervous system, IEEE Trans. Rehabil. Eng. 8(2):198–202.

    Article  Google Scholar 

  • Kostov, A., and Polak, M., 2000, Parallel man-machine training in development of EEG-based cursor control, IEEE Trans. Rehabil. Eng. 8(2):203–205.

    Article  Google Scholar 

  • Kubler, A., Kotchoubey, B., Kaiser, J., Wolpaw, J., and Birbaumer, N., 2001, Brain-computer communication: Unlocking the locked in, Psychol. Bull. 127(3):358–375.

    Article  Google Scholar 

  • Laubach, M., Wessberg, J., and Nicolelis, M. A. L., 2000, Cortical ensemble activity increasingly predicts behavior outcomes during learning of a motor task, Nature 405(6786):567–571.

    Article  Google Scholar 

  • Lauer, R. T., Peckham, P. H., Kilgore, K. L., and Heetderks, W. J., 2000, Applications of cortical signals to neuroprosthetic control: A critical review, IEEE Trans. Rehabil. Eng. 8(2):205–208.

    Article  Google Scholar 

  • Le, J., Menon, V., and Gevins, A., 1992, Local estimate of surface Laplacian derivation on a realistically shaped scalp surface and its performance on noisy data, Electroenceph. Clin. Neurophysiol. 92:433–441.

    Article  Google Scholar 

  • Levine, S. P., Huggins, J. E., BeMent, S. L., Kushwaha, R. K., Schuh, L. A., Rohde, M. M., Passaro, E. A., Ross, D. A., Elisevich, K. V., and Smith, B. J., 2000, A direct brain interface based on event-related potentials, IEEE Trans. Rehabil. Eng. 8(2):180–185.

    Article  Google Scholar 

  • Makeig, S., Enghoff, S., Jung, T. P., and Sejnowski, T. J., 2000, A natural basis for efficient brain-actuated control, IEEE Trans. Rehabil. Eng. 8(2):208–211.

    Article  Google Scholar 

  • Malmivuo, J., and Plonsey, R., 1995, Bioelectromagnetism—Principles and Applications of Bioelectric and Biomagnetic Fields, Oxford University Press, New York.

    Google Scholar 

  • Mason, S. G., and Birch, G. E., 2003, A general framework for brain-computer interface design, IEEE Trans. Neural Syst. Rehabil. Eng. 11(1):70–85.

    Article  Google Scholar 

  • Maynard, E., Nordhausen, C., and Normann, C., 1997, The Utah intracortical electrode array: A recording structure for potential brain-computer interfaces, Electrencephalogr. Clin. Neurophysiol. 102:228–239.

    Article  Google Scholar 

  • McFarland, D. J., McCane, L. M., David, S. V., and Wolpaw, J. R., 1997, Spatial filter selection for EEG-based communication, Electroencephalogr. Clin. Neurophysiol. 103:386–394.

    Article  Google Scholar 

  • Middendorf, M., McMillan, G., Calhoun, G., and Jones, K. S., 2000, Brain-computer interfaces based on steady-state visual evoked response, IEEE Trans. Rehabil. Eng. 8(2):211–214.

    Article  Google Scholar 

  • Mosher, J. C., Lewis, P. S., and Leahy, R. M., 1992, Multiple dipole modeling and localization from spatio-temporal MEG data, IEEE Trans. Biomed. Eng. 39:541–557.

    Article  Google Scholar 

  • Moxon, K. A., 2004, Neurorobotics, In: Neural Engineering (He, ed.), Kluwer Academic Publishers, 2005.

    Google Scholar 

  • Müller, K., Kohlmorgen J., Ziehe, A., and Blankertz, B., 2000, Decomposition algorithms for analyzing brain signals, In: Adaptive Systems for Signal Processing, Communications and Control (S. Haykin, ed.), pp. 105–110.

    Google Scholar 

  • Muller-Gerking, J., Pfurtscheller, G., and Flyvbjerg, H., 1999, Designing optimal spatial filters for single-trial EEG classification in a movement task, Clin. Neurophysiol. 110(5):787–798.

    Article  Google Scholar 

  • Mussa-Ivaldi, F. A., and Miller, L. E., 2003, Brain-machine interfaces: Computational demands and clinical needs meet basic neuroscience, Trends Neurosci. 26(6):329–334.

    Article  Google Scholar 

  • Nicolelis, M., 2001, Actions from thoughts, Nature 409:403–407.

    Article  Google Scholar 

  • Nicolelis, M., 2003, Brain-machine interfaces to restore motor function and probe neural circuits, Nat. Rev. Neurosci. 4(5):417–422.

    Article  Google Scholar 

  • Nicolelis, M., and Chapin, J., 2002, Controlling robots with mind, Sci. Am. 287(4):46–53.

    Article  Google Scholar 

  • Nunez, P., Silberstein, R., Cadusch, P., Wijesinghe, R., Westdorp, A., and Srinivasan, R., 1994, A theoretical and experimental study of high resolution EEG based on surface Laplacians and cortical imaging, Electroencephalogr. Clin. Neurophysiol. 90(1):40–57.

    Article  Google Scholar 

  • Obermaier, B., Guger, C., Neuper, C., and Pfurthscheller, G., 2001, Hidden Markov models for online classification of single trial EEG data, Pattern Recogn. Lett. 22:1299–1309.

    Article  MATH  Google Scholar 

  • Osman, A., and Robert, A., 2001, Time-course of cortical activation during overt and imagined movements, in: Proceedings of the Cognitive Neuroscientists Annual Meetings, New York.

    Google Scholar 

  • Papoulis, A., 1977, Signal Analysis, McGraw-Hill Book Company, New York.

    MATH  Google Scholar 

  • Penny, W. D., and Roberts, S. J., 1998, Bayesian neural networks for detection of imagined finger movements from single-trial EEG, Neural Networks 12:877–892.

    Article  Google Scholar 

  • Penny, W. D., and Roberts, S. J., 1999, EEG-based communication via dynamic neural network models, Proc. Int. Joint Conf. Neural Networks. [CDROM]

    Google Scholar 

  • Penny, W. D., Roberts, S. J., Curran, E. A., and Stokes, M. J., 2000, EEG-based communication: A pattern recognition approach, IEEE Trans. Rehabil. Eng. 8(2):214–215.

    Article  Google Scholar 

  • Perrin, F., Bertrand, O., and Pernier, J., 1987, Scalp current density mapping: value and estimation from potential data, IEEE Trans. Biomed. Eng. 34:283–288.

    Article  Google Scholar 

  • Peters, B. O., Pfurtscheller, G., and Flyvbjerg, H., 1998, Mining multi-channel EEG for its information content: An ANN-based method for a brain-computer interface, Neural Networks 11:1429–1433.

    Article  Google Scholar 

  • Pfurtscheller, G., and Neuper, C., 2001, Motor imagery and direct brain-computer communication, Proc. IEEE 89(7):1123–1134.

    Article  Google Scholar 

  • Pfurtscheller, G., Flotzinger, D., and Kallcher, J., 1993, Brain-computer interface: A new communication device for handicapped persons, J. Microcomp. App. 16:293–299.

    Article  Google Scholar 

  • Pfurtscheller, G., Flotzinger, D., and Neuper, C., 1994, Differentiation between finger, toe and tongue movement in man based on 40-Hz EEG, Electroencephalogr. Clin. Neurophysiol. 90(6):456–460.

    Article  Google Scholar 

  • Pfurtscheller, G., and Lopes da Silva, F. H., 1999, Event-related EEG/MEG synchronization and desynchronization: Basic principles, Clin. Neurophysiol. 110(11):1842–1847.

    Article  Google Scholar 

  • Pfurtscheller, G., Neuper, C., and Flotzinger, D., 1997, EEG-based discrimination between imagination of right and left hand movement, Electroencephalogr. Clin. Neurophysiol. 103(6):642–651.

    Article  Google Scholar 

  • Pfurtscheller, G., Neuper, C., Guger, C., Harkam, W., Ramoser, H., Schlögl, A., Obermaier, B., and Pregenzer, M., 2000, Current trends in Graz brain-computer interface (BCI) research, IEEE Trans. Rehabil. Eng. 8(2):216–219.

    Article  Google Scholar 

  • Qin, L., Ding, L., and He, B., 2004, Motor imagery classification by means of source analysis for brain computer interface applications, Journal of Neural Eng. 1:135–141.

    Article  Google Scholar 

  • Ramoser, H., Muller-Gerking, J., and Pfurtscheller, G., 2000, Optimal spatial filtering of single trial EEG during imagined hand movement, IEEE Trans. Rehabil. Eng. 8(4):441–446.

    Article  Google Scholar 

  • Robert, C., Gaudy, J., and Limoge, A., 2002, Electroencephalogram processing using neural networks, Clin. Neurophysiol. 113:694–701.

    Article  Google Scholar 

  • Sajda, P., Gerson, A., Muller, K., Blankertz, B., and Parra, L., 2003, A data analysis competition to evaluate machine learning algorithms for use in brain-computer interfaces, IEEE Trans. Neural Syst. Rehabil. Eng. 11(2):184–185.

    Article  Google Scholar 

  • Sanchez, J. C., Carmena, J. M., Lebedev, M. A., Nicolelis, M. A., Harris, J. G., and Principe, J. C., 2004, Ascertaining the importance of neurons to develop better brain-machine interfaces, IEEE Trans. Biomed. Eng. 51(6):943–953.

    Article  Google Scholar 

  • Serruya, M., Hatsopoulos, N., Paninski, L., Fellows, M., and Donoghue, J., 2002, Instant neural control of a movement signal, Nature 416:141–142.

    Article  Google Scholar 

  • Serruya, M., Hatsopoulos, N., Paninski, L., Fellows, M., and Donoghue, J., 2003, Robustness of neuroprosthetic decoding algorithms, Biol. Cybern. 88(3):219–228.

    Article  MATH  Google Scholar 

  • Spencer, K. M., Dien, J., and Donchin, E., 2001, Spatiotemporal analysis of the late ERP responses to deviant stimuli, Psychophysiology 38(2):343–358.

    Article  Google Scholar 

  • Sutter, E. E., 1992, The brain response interface: Communication through visually-induced electrical brain responses, J. Microcomp. App. 15:31–45.

    Article  Google Scholar 

  • Vallabhaneni, A., and He, B., 2004, Motor imagery task classification for brain computer interface applications using spatio-temporal principle component analysis, Neurol. Res., 26(3):282–287.

    Article  Google Scholar 

  • Vial, J., 1977, Real-time detection of brain events in EEG, Proc. IEEE 65:633–664.

    Article  Google Scholar 

  • Wang, T., and He, B., 2004, An efficient rhythmic component expression and weighting synthesis strategy for classifying motor imagery EEG in brain computer interface, J. Neural Eng. 1(1):1–7.

    Article  Google Scholar 

  • Wang, Y., Zhang, Z., Li, Y., Gao, X., Gao, S., and Yang, F., 2004, An algorithm based on CSSD and FDA for classifying single—trial EEG, IEEE Trans. Biomed. Eng. 51(6):1081–1086.

    Article  Google Scholar 

  • Weiskopf, N., Veit, R., Erb, M., Mathiak, K., Grodd, W., Goebel, R., and Birbaumer, N., 2003, Physiological self-regulation of regional brain activity using real-time functional magnetic resonance imaging (fMRI): Methodology and exemplary data, Neuroimage 19(3):577–586.

    Article  Google Scholar 

  • Wessberg, J., Stambaugh, C., Kralik, J., Beck, P., Laubach, M., Chapin, J., Kim, J., Biggs, S., Srinivasan, M., and Nicolelis, M., 2000, Real-time prediction of hand trajectory by ensembles of cortical neurons in primates, Nature 408:361–365.

    Article  Google Scholar 

  • Wickelgren, I., 2003, Neuroscience: Tapping the mind, Science 299(5606):496–499.

    Article  Google Scholar 

  • Wolpaw, J. R., 2003, Brain-computer interfaces: Signals, methods, and goals, Proc. 1st Int. IEEE EMBS Conf. Neural Eng. 1:584–585.

    Article  Google Scholar 

  • Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., and Vaughan, T. M., 2002, Brain-computer interfaces for communication and control, Clin. Neurophysiol. 113(6):767–791.

    Article  Google Scholar 

  • Wolpaw, J. R., Birbaumer, N., Heetderks, W. J., McFarland, D. J., Peckham, P. H., Schalk, G., Donchin, E., Quatrano, L. A., Robinson, C. J., and Vaughan, T. M., 2000b, Brain-computer interface technology: A review of the first international meeting, IEEE Trans. Rehabil. Eng. 8(2):164–173.

    Article  Google Scholar 

  • Wolpaw J. R., and McFarland, D. J., 1994, Multichannel EEG-based brain-computer communication, Electroencephalogr. Clin. Neurophysiol. 90(6):444–449.

    Article  Google Scholar 

  • Wolpaw, J. R., McFarland, D. J., Neat, G. W., and Forneris, C. A., 1991, An EEG-based brain-computer interface for cursor control, Electroencephalogr. Clin. Neurophysiol 78(3):252–259.

    Article  Google Scholar 

  • Wolpaw, J. R., McFarland, D. J., and Vaughan, T. M., 2000a, Brain-computer interface research at the Wadsworth Center, IEEE Trans. Rehabil. Eng. 8(2):222–226.

    Article  Google Scholar 

  • Yom-Tov, E., and Inbar, G. F., 2002, Feature selection for the classification of movements from single movement-related potentials, IEEE Trans. Neural Syst. Rehabil. Eng. 10(3):170–176.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic/Plenum Publishers

About this chapter

Cite this chapter

Vallabhaneni, A., Wang, T., He, B. (2005). Brain—Computer Interface. In: He, B. (eds) Neural Engineering. Bioelectric Engineering. Springer, Boston, MA. https://doi.org/10.1007/0-306-48610-5_3

Download citation

  • DOI: https://doi.org/10.1007/0-306-48610-5_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-48609-8

  • Online ISBN: 978-0-306-48610-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics