Advertisement

Neural System Identification

  • Garrett B. Stanley
Part of the Bioelectric Engineering book series (BEEG)

Abstract

One could argue that all scientific problems can be described in terms of two fundamental objectives: identification and control. Much of the current body of research in basic neuroscience revolves around the problem of identification, although not formally posed as such. The problem of identification is that of cause and effect. For example, in considering the relationship between two synaptically connected neurons, how does the presynaptic action potential cause the postsynaptic potential? At a more macroscopic level, how do the photons of light entering the eye cause the neuronal population activity in the visual pathway of the brain? Due to the overwhelming complexity of the nervous system, it is in fact difficult to think of threads of investigation that are not in some way reliant on identification or modeling at the systems level. The concept of system identification goes beyond simply reporting experimental observations. In many cases, the input can be controlled, and the goal is to identify a functional relationship between stimulus and response that will enable prediction of the response of the system to subsequent arbitrary inputs. Failure in prediction exposes previous misconceptions about the underlying dynamics, often leading to more intelligently designed experiments, and so on. Herein lies the true value of the identification process in this largely empirical field of science.

Keywords

Heart Rate Variability Firing Rate Receptive Field Spike Train Lateral Geniculate Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akselrod, S., Gordon, D., Madwed, J., Snidman, N., Shannon, D., and Cohen, R., 1985, Hemodynamic regulation: Investigation by spectral analysis, Am. J. Physiol. 249:H867–H875.Google Scholar
  2. Akselrod, S., Gordon, D., Ubel, F., Shannon, D., Bargar, A., and Cohen, R., 1981, Power spectrum analysis of heart rate fluctuation: A quantitative probe of beat-to-beat cardiovascular control, Science 213(10):220–222.CrossRefGoogle Scholar
  3. Albrecht, D. G., Farrar, S. B., and Hamilton, D. B., 1984, Spatial contrast adaptation characteristics of neurones recorded in the cat’s visual cortex, J. Physiol. 347:713–739.Google Scholar
  4. Appel, M., Berger, R., Saul, J., Smith, J., and Cohen, R., 1989, Beat to beat variability in cardiovascular variables: Noise or music? J. Am. Coll. Cardiol. 14:1139–1148.CrossRefGoogle Scholar
  5. Berger, R., Akselrod, S., Gordon, D., and Cohen, R., 1986, An efficient algorithm for spectral analysis of heart rate variability, IEEE Trans. Biomed. Eng. 33:900–904.CrossRefGoogle Scholar
  6. Box, G., and Jenkins, G., 1976, Time Series Analysis: Forecasting and Control, rev. ed., Holden-Day. San Francisco, CA.zbMATHGoogle Scholar
  7. Brillinger, D., 1981, Time Series Analysis, expanded ed., McGraw-Hill, New York.zbMATHGoogle Scholar
  8. Brillinger, D. R., 1992, Nerve cell spike train data analysis: A progression of technique, J. Am. Stat. Soc., 87(418):260–271.Google Scholar
  9. Brillinger, D. R., Bryant, H. L., and Segundo, J. P., 1976, Identification of synaptic interactions, Biol. Cybernetics. 22:213–228.CrossRefzbMATHGoogle Scholar
  10. Brown, E. N., Nguyen, D. P., Frank, L. M., Wilson, M. A., and Solo, V., 2001, An analysis of neural receptive field plasticity by point process adaptive filtering, Proc. Natl. Acad. Sci. USA 98:12261–12266.CrossRefGoogle Scholar
  11. Brumberg, J. C., Pinto, D. J., and Simons, D. J., 1996, Spatial gradients and inhibitory summation in the rat whisker barrel system, J. Neurophysiol. 76:130–140.Google Scholar
  12. Carvell, G. E., and Simons, D. J., 1990, Biometric analysis of vibrissal tactile discrimination in the rat, J. Neurosci. 10:2638–2648.Google Scholar
  13. Carvell, G. E., and Simons, D. J., 1996, Abnormal tactile experience early in life disrupts active touch, J. Neurosci. 15:2750–2757.Google Scholar
  14. Chatfield, C., 1989, The Analysis of Time Series: An Introduction, Chapman and Hall, London.zbMATHGoogle Scholar
  15. Chichilnisky, E. J., 2001, A simple white noise analysis of neuronal light responses, Network 12:199–213.zbMATHGoogle Scholar
  16. Cramér, H., 1946, Mathematical Methods of Statistics, Princeton University Press, New Jersey.zbMATHGoogle Scholar
  17. Dayan, P., and Abbott, L. F., 2001, Theoretical Neuroscience, MIT Press, Cambridge.zbMATHGoogle Scholar
  18. DeBoer, E., and Kuyper, P., 1968, Triggered correlation, IEEE Trans. Biomed. Eng. 15:169–179.Google Scholar
  19. Eichenbaum, H., and Davis, J., 1998, Neuronal Ensembles: Strategies for Recording and Decoding, John Wiley & Sons, New York.Google Scholar
  20. Enroth-Cugell, C., and Shapley, R., 1973, Adaptation and dynamics of cat retinal ganglion cells, J. Physiol. 233:271–309.Google Scholar
  21. Fanselow, E. E., and Nicolelis, M. A. L., 1999, Behavioral modulation of tactile response in the rat somatosensory system, J. Neurosci. 19:7603–7616.Google Scholar
  22. Greblicki, W., 1992, Nonparametric identification of wiener systems. IEEE Trans. Inform. Theory 38:1487–1493.zbMATHCrossRefGoogle Scholar
  23. Guic-Robles, E., Valdivieso, C., and Guajardo, G., 1989, Rats can learn a roughness discrimination using only their vibrissal system, Behav. Brain Res. 31:285–289.CrossRefGoogle Scholar
  24. Hubel, D., 1995, Eye, Brain, and Vision, Scientific American Library, New York.Google Scholar
  25. Hunter, I. W., and Korenberg, M. J., 1986, The identification of nonlinear biological systems: wiener and hammerstein cascade models, Biol. Cybernet. 55:135–144.zbMATHMathSciNetGoogle Scholar
  26. Jenkins, G., and Watts, D., 1968, Spectral Analysis and Its Applications, Holden-Day, San Franscisco, CA.zbMATHGoogle Scholar
  27. Jones, J. P., and Palmer, L. A., 1987, The two-dimensional spatial structure of simple receptive fields in cat striate cortex, J. Neurophysiol. 58:1187–1211.Google Scholar
  28. Klein, S. A., 1992, Optimizing the estimation of nonlinear kernels, In: Nolinear Vision, R. B. Pinter and B. Nabet, ed., CRC Press, Boca Raton, FL, pp. 109–170.Google Scholar
  29. Korenberg, M. J., and Hunter, I. W., 1999, Two methods for identifying Wiener cascades having noninvertible static nonlinearities, Ann. Biomed. Eng. 27:793–804.CrossRefGoogle Scholar
  30. Kyriazi, H. T., Carvell, G. E., and Simons, D. J., 1994, OFF response transformations in the whisker/barrel system, J. Neurophysiol. 172(1):392–401.Google Scholar
  31. Lee, Y. W., and Schetzen, M., 1965, Measurements of the Wiener kernels of nonlinear systems by cross-correlation, Int. J. Control 2:237–254.CrossRefGoogle Scholar
  32. Lesica, N. A., Boloori, A. S., and Stanley, G. B., 2003, Adaptive encoding in the visual pathway, Network Comput. Neural Syst. 14:119–135.CrossRefGoogle Scholar
  33. Liao, D., Barnes, R., Chambless, L., Simpson, R., Sorlie, P., and Heiss, G., 1995, Age, race, and sex differences in autonomic cardiac function measured by spectral analysis of heart rate variability—the ARIC study, Am. J. of Cardiol. 76(12):906–912.CrossRefGoogle Scholar
  34. Ljung, L., 1987, System Identification: Theory For the User, Prentice-Hall, New Jersey.zbMATHGoogle Scholar
  35. Ljung, L., and Söderström, T., 1983, Theory and Practice of Recursive Identification, MIT Press, Cambridge, MA.zbMATHGoogle Scholar
  36. Malliani, A., Pagani, M., Lombardi, F., and Cerutti, S., 1991, Cardiovascular neural regulation explored in the frequency domain, Circulation 84:482–492.Google Scholar
  37. Mao, B. Q., MacLeish, P. R., and Victor, J. D., 1998, The intrinsic dynamics of retinal bipolar cells isolated from tiger salamander, Visual Neurosci. 15:425–438.CrossRefGoogle Scholar
  38. Marmarelis, P. Z., and Marmarelis, V. Z., 1978, Analysis of Physiological Systems: The White-Noise Approach, Plenum Press, New York.Google Scholar
  39. Marmarelis, P., and Naka, K. I., 1973a, Non-linear analysis and synthesis of receptive field responses in the catfish retina. I. Horizontal cell-ganglion chains, J. Neurophysiol. 36:605–618.Google Scholar
  40. Marmarelis, P., and Naka, K. I., 1973b, Non-linear analysis and synthesis of receptive feld responses in the catfish retina. II. One-input white-noise analysis, J. Neurophysiol. 36:619–633.Google Scholar
  41. Meister, M., and Berry, M., 1999, The neural code of the retina, Neuron 22:435–450.CrossRefGoogle Scholar
  42. Movshon, J. A., Thompson, I. D., and Tolhurst, D. J., 1978, Spatial summation in the receptive fields of simple cells in the cat’s striate cortex, J. Physiol. 283:53–77.Google Scholar
  43. Ohzawa, I., Sclar, G., and Freeman, R. D., 1985, Contrast gain control in the cat’s visual system, J. Neurophysiol. 54:651–667.Google Scholar
  44. Papoulis, A., 1984, Probability, Random Variables, and Stochastic Processes, 2nd ed., McGraw-Hill, New York.zbMATHGoogle Scholar
  45. Paulin, M. G., 1993, A method for constructing data-based models of spiking neurons using a dynamic linear-static nonlinear cascade, Biol. Cybernet. 69:67–76.zbMATHCrossRefGoogle Scholar
  46. Perkel, D., Gerstein, G., and Moore, G., 1967, Neuronal spike trains and stochastic point processes. I. The single spike train, Biophys. J. 7(4):391–418.CrossRefGoogle Scholar
  47. Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., 1992, Numerical Recipes in C: The Art of Scientific Computing, Cambridge University Press, Cambridge.Google Scholar
  48. Rao, C. R., 1973, Linear Statistical Inference and Its Applications, John Wiley & Sons, New York.zbMATHGoogle Scholar
  49. Reid, R. C., Soodak, R. E., and Shapley, R. M., 1991, Directional selectivity and spatiotemporal structure of receptive fields of simple cells in cat striate cortex, J. Neurophysiol. 66:505–529.Google Scholar
  50. Ringach, D., Sapiro, G., and Shapley, R., 1997, A subspace reverse-correlation technique for the study of visual neurons, Vision Res. 37:2455–2464.CrossRefGoogle Scholar
  51. Shapley, R., and Victor, J. D., 1978, The effect of contrast on the transfer properties of cat retinal ganglion cells, J. Physiol. 285:275–298.Google Scholar
  52. Simons, D. J., 1985, Temporal and spatial integration in the rat SI vibrissa cortex, J. Neurophysiol. 54:615–635.Google Scholar
  53. Söderström, T., and Stoica, P., 1987, System Identification, Prentice-Hall, New Jersey.Google Scholar
  54. Stanley, G. B., 2002, Adaptive spatiotemporal receptive field estimation in the visual pathway, Neur. Comput. 14:2925–2946.zbMATHCrossRefGoogle Scholar
  55. Stanley, G. B., and Webber, R. M., 2003, A point process analysis of sensory encoding, J. Comput. Neurosci., in press.Google Scholar
  56. Stanley, G., Li, F., and Dan, Y., 1999, Reconstruction of natural scenes from ensemble responses in the lateral geniculate nucleus, J. Neurosci. 19(18):8036–8042.Google Scholar
  57. Stanley, G. B., Poolla, K., and Siegel, R. A., 2000, Threshold modeling of autonomic control of heart rate variability, IEEE Trans. Biomed. Eng. 49(9):1147–1153.CrossRefGoogle Scholar
  58. Stanley, G., Verotta, D., Craft, N., Siegel, R., an Schwartz, J., 1996, Age and autonomic effects on interrelationships between lung volume and heart rate, Am. J. Physiol. 270:H1833–H1840.Google Scholar
  59. Stanley, G., Verotta, D., Craft, N., Siegel, R., and Schwartz, J., 1997, Age effects on interrelationships between lung volume and heart rate during standing, Am. J. Physiol. 273:H2128–H2134.Google Scholar
  60. Tolhurst, D. J., and Dean, A. F., 1990, The effects of contrast on the linearity of the spatial summation of simple cells in the cat’s striate cortex, Exp. Brain Res. 79:582–588.CrossRefGoogle Scholar
  61. Volterra, V., 1959, Theory of Functionals and of Integral and Integro-Differential Equations, Dover Publications, New York.zbMATHGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 2005

Authors and Affiliations

  • Garrett B. Stanley
    • 1
    • 2
  1. 1.Harvard UniversityCambridge
  2. 2.Division of Engineering and Applied SciencesHarvard UniversityCambridge

Personalised recommendations