Skip to main content

Quantification of Brain Aneurysm Dimensions from CTA for Surgical Planning of Coiling Interventions

  • Chapter
Handbook of Biomedical Image Analysis

5.6 Conclusion

We have presented a method for three dimensional quantification of brain aneurysms for the purpose of surgical planning and the corresponding evaluation study. This study demonstrates the feasibility of using implicit deformable models combined with non-parametric statistical information to quantify aneurysm morphology and to obtain clinically relevant parameters. In summary, the technique presented in this work will contribute to the computerized surgical planning of coiling procedures by allowing more accurate and truly 3D quantification of brain aneurysms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Winn, H., Jane, J., Taylor, J., Kaiser, D., and Britz, G., Prevalence of asymptomatic incidental aneurysms: review of 4568 arteriograms, J. Neurosurg., Vol. 97, No. 1, p. 240, July 2002.

    Google Scholar 

  2. Huang, J. and van Gelder, J., The probability of sudden death from rupture of intracranial aneurysms: a meta-analysis, Neurosurgery, Vol. 51, No. 5, pp. 1101–5, Nov. 2002.

    Article  Google Scholar 

  3. Hop, J., Rinkel, G., Algra, A., and van Gijn, J., Case-fatality rates and functional outcome after subarachnoid hemorrhage: a systematic review, Stroke, Vol. 28, pp. 660–664, 1997.

    Google Scholar 

  4. Raaymakers, T., Rinkel, G., Limburg, M., and Algra, A., Mortality and morbidity of surgery for unruptured intracranial aneurysms: a metaanalysis., Stroke, Vol. 29, No. 8, pp. 1531–8, Aug. 1998.

    Google Scholar 

  5. Spetzger, U., Rohde, V., and Gilsbach, J., Clips and coils in aneurysm treatment, Wien Med Wochenschr., Vol. 147, Nos. 7–8, pp. 172–7, 1997.

    Google Scholar 

  6. Murayama, Y., Nien, Y., Duckwiler, G., Gobin, Y., Jahan, R., Frazee, J., Martin, N., and Vinuela, F., Guglielmi detachable coil embolization of cerebral aneurysms: 11 years’ experience, J Neurosurg, Vol. 98, No. 5, pp. 959–66, May 2003.

    Article  Google Scholar 

  7. Guglielmi, G., Vinuela, F., Spetka, I., and Macellari, V., Electrothrombosis of saccular aneurysms via endovascular approach, Neruosurgery, Vol. 75, No. 1, pp. 1–7, July 1991.

    Google Scholar 

  8. Debrun, G., Aletich, V., Kehrli, P., Misra, M., Ausman, J., Charbel, F., and Shownkeen, H., Aneurysm geometry: an important criterion in selecting patients for Guglielmi detachable coiling, Neuro. Med. Chir., Vol. 38, pp. 1–20, April 1998.

    Google Scholar 

  9. Anderson, G., Steinke, D., Petruk, K., Ashforth, R., and Findlay, J., Computed Tomographic Angiography versus Digital Subtraction Angiography for the diagnosis and early treatment of ruptured intracranial aneurysms, Neurosurgery, Vol. 45, No. 6, pp. 1315–20, Dec. 1999.

    Article  Google Scholar 

  10. White, P., Teasdale, E., Wardlaw, J., and Easton, V., Intracranial aneurysms: CT angiography and MR angiography for detection prospective blinded comparison in a large patient cohort., Radiology, Vol. 219, No. 3, pp. 739–49, June 2001.

    Google Scholar 

  11. Loncaric, S. and Sorantin, M. S. E., 3-D deformable model for aortic aneurysm segmentation from CT images, Engineering in Medicine and Biology Society, 2000. In: Proceedings of the 22nd Annual International Conference of the IEEE, Vol. 1, pp. 398–401, July 2000.

    Google Scholar 

  12. Lorigo, L., Faugeras, O., Grimson, W., Keriven, R., Kikinis, R., and Westin, C., Co-dimension 2 Geodesic Active Contours for MRA Segmentation, Lecture Notes in Computer Science, Vol. 1613, pp. 126, 1999.

    Google Scholar 

  13. Lorigo, L., Faugeras, O., Grimson, W., Keriven, R., Kikinis, R., Nabavi, A., and Westin., C., CURVES: Curve evolution for vessel segmentation, Med. Image. Analysis, Vol. 5, No. 3, pp. 195–206, 2001.

    Article  Google Scholar 

  14. van Bemmel, C., Spreeuwers, L., Viergever, M., and Niessen, W., Level-Set Based Carotid Artery Segmentation for Stenosis Grading, Medical Image Computing and Computer-Assisted Intervention (MICCAI 2002), Lecture Notes in Computer Science, Vol. 2489, pp. 36–43, 2002.

    Google Scholar 

  15. van Bemmel, C., Spreeuwers, L., Viergever, M., and Niessen, W., Level-Set-Based Artery-Vein Separation in Blood Pool Agent CE-MR angiograms, IEEE Transactions on Medical Imaging, Vol. 22, No. 10, pp. 1224–1234, Oct. 2003.

    Article  Google Scholar 

  16. Deschamps, T., Extraction de courbes et surfaces par méthodes de chemins minimaux et ensembles de niveaux. Applications en imagerie medicale 3D, Ph.D. Thesis, University of Paris-Dauphine, France, 2001.

    Google Scholar 

  17. Frangi, A., Niessen, W., Vincken, K., and Viergever, M., Multiscale Vessel Enhancement Filtering, Lecture Notes in Computer Science, Vol. 1496, pp. 130–137, 1998.

    Article  Google Scholar 

  18. Zhu, S. and Yuille, A., Region competition: unifying snakes, region growing, and Bayes/MDL for multiband image segmentation. In: IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 18, No. 9, pp. 884–900, 1996.

    Article  Google Scholar 

  19. Paragios, N., Geodesic Active Regions and Level Set Methods: Contributions and Applications in Artificial Vision, Ph.D. Thesis, University of Nice Sophia-Antipolis, France, 2000.

    Google Scholar 

  20. Yezzi, A., Tsai, A., and Willsky, A., A statistical approach to snakes for bimodal and trimodal imagery, In: Proceedings of the Seventh IEEE International Conference on Computer Vision, Vol. 2, pp. 898–903, 1999.

    Google Scholar 

  21. Sato, Y., Nakajima, S., Shiraga, N., Atsumi, H., Yoshida, S., Koller, T., Gerig, G., and Kikinis, R., Three-dimensional multiscale line filter for segmentation and visualization of curvilinear structures in medical images, Med. Image Anal., Vol. 2, No. 2, pp. 143–168, 1998.

    Article  Google Scholar 

  22. Dasarathy, B., Nearest Neighbor Pattern Classification Techniques, IEEE Computer Society Press, Los Alamitos, CA, 1990.

    Google Scholar 

  23. Duda, R., Stork, D., and Hart, P., Pattern Classification and Scene Analysis: Pattern Classification, John Wiley and Sons Inc., Chester, UK 2000.

    Google Scholar 

  24. Perona, P. and J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Trans. Pattern Anal. Machine Intel., Vol. 12, No. 7, pp. 629–639, 1990.

    Article  Google Scholar 

  25. Sapiro, G., Geometric Partial Differential Equations and Image Analysis, Cambridge University Press, Cambridge, 2001.

    MATH  Google Scholar 

  26. Teo, P., Sapiro, G., and Wandell, B., Segmenting cortical gray matter for functional MRI visualization, In: 6th Int. Conf. Comput. Vision, pp. 292–297, 1998

    Google Scholar 

  27. Caselles, V., Kimmel, R., and Sapiro, G., Geodesic Active Contours, Int. J. Comput. Vision, Vol. 22, No. 1, pp. 61–79, 1997.

    Article  MATH  Google Scholar 

  28. Kass, M., Witkin, A., and Terzopoulos, D., Snakes: Active contour models, Int. J. Comput. Vision, Vol. 1, No. 4, pp. 321–331, 1988.

    Article  Google Scholar 

  29. Osher, S. and Sethian, J., Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comp. Phy, Vol. 79, pp. 12–49, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  30. ANN library: http://www.cs.umd.edu/~mount/ANN.

    Google Scholar 

  31. Sethian, J., Level Set Methods and Fast Marching Methods, Cambridge University Press, Cambridge, 2000.

    Google Scholar 

  32. Osher, S. and Fedkiw, R., Level Set Methods and Dynamic Implicit Surfaces, Springer-Verlag, Berlin 2003.

    MATH  Google Scholar 

  33. Bland, J. and Altman, D., Statistical methods for assessing agreement between two methods of clinical measurement, Lancet, Vol. 8476, pp. 307–10, Feb. 1986.

    Google Scholar 

  34. Jain, A. and Chandrasekaran, B., Dimensionality and sample size considerations in pattern recognition practice, Handbook of Statistics, P. R. Krishnaiah and L. N. Kanal (Eds) Vol. 2, North Holland, pp. 835–855, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic / Plenum Publishers, New York

About this chapter

Cite this chapter

Hernández, M., Frangi, A.F., Sapiro, G. (2005). Quantification of Brain Aneurysm Dimensions from CTA for Surgical Planning of Coiling Interventions. In: Suri, J.S., Wilson, D.L., Laxminarayan, S. (eds) Handbook of Biomedical Image Analysis. Topics in Biomedical Engineering International Book Series. Springer, Boston, MA. https://doi.org/10.1007/0-306-48608-3_5

Download citation

  • DOI: https://doi.org/10.1007/0-306-48608-3_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-48607-4

  • Online ISBN: 978-0-306-48608-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics