Skip to main content

Level Set Segmentation of Biological Volume Datasets

  • Chapter

Part of the book series: International Topics in Biomedical Engineering ((ITBE))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Drebin, R., Carpenter, L., and Hanrahan, P., Volume rendering, In: Proceedings SIGGRAPH 88 Conference, pp. 65–74, 1988.

    Google Scholar 

  2. Levoy, M., Display of surfaces from volume data, IEEE Comput. Graph. Appl., Vol. 9, No. 3, pp. 245–261, 1990.

    MATH  Google Scholar 

  3. Laur, D. and Hanrahan, P., Hierarchical splatting: A progressive refinement algorithm for volume rendering, In: SIGGRAPH’ 91 Proceedings, Sederberg, T. W., ed., pp. 285–288, 1991.

    Google Scholar 

  4. Parker, S., Parker, M., Livnat, Y., Sloan, P., Hansen, C., and Shirley, P., Interactive Ray Tracing for volume visualization, IEEE Trans. Vis. Comput. Graph., Vol. 5, No. 3, pp. 238–250, 1999.

    Article  Google Scholar 

  5. Leventon, M., Faugeraus, O., Grimson, W., and Wells, W. III, Level set based segmentation with intensity and curvature priors, In: Workshop on Mathematical Methods in Biomedical Image Analysis Proceedings, pp. 4–11, 2000.

    Google Scholar 

  6. Malladi, R., Sethian, J., and Vemuri, B., Shape modeling with front propagation: A level set approach, IEEE Trans. Pattern Anal. Mach. Intell., Vol. 17, No. 2, pp. 158–175, 1995.

    Article  Google Scholar 

  7. Sethian, J., Level Set Methods and Fast Marching Methods, 2nd edn., Cambridge University Press, Cambridge, UK, 1999.

    MATH  Google Scholar 

  8. Staib, L., Zeng, X., Schultz, R., and Duncan, J., Shape constraints in deformable models, In: Handbook of Medical Imaging, Bankman, I., ed., Academic Press, New York, Chapter 9, pp. 147–157, 2000.

    Chapter  Google Scholar 

  9. Wu, Z., Chung, H.-W., and Wehrli, F. W., A Bayesian approach to subvoxel tissue classification in NMR microscopic images of trabecular bone, J. Comput. Assist. Tomogr., Vol. 12, No. 1, pp. 1–9, 1988.

    Article  Google Scholar 

  10. Kao, Y.-H., Sorenson, J. A., and Winkler, S. S., MR image segmentation using vector decomposition and probability techniques: A general model and its application to dual-echo images, Magn. Reson. Med., Vol. 35, pp. 114–125, 1996.

    Article  Google Scholar 

  11. Cline, H. E., Lorensen, W. E., Kikinis, R., and Jolesz, F., Three-dimensional segmentation of MR images of the head using probability and connectivity, J. Comput. Assist. Tomogr., Vol. 14, No. 6, pp. 1037–1045, 1990.

    Article  Google Scholar 

  12. Laidlaw, D. H., Fleischer, K.W., and Barr, A. H., Partial-volume Bayesian classification of material mixtures in MR volume data using voxel histograms, IEEE Trans. Med. Imaging, Vol. 17, No. 1, pp. 74–86, 1998.

    Article  Google Scholar 

  13. Johnson, V. E., A framework for incorporating structural prior information into the estimation of medical images, In: Information Processing in Medical Imaging (IPMI’93), Barrett, H. H. and Gmitro, A. F., eds., No. 687 In Lecture Notes in Computer Science, Springer-Verlag, Berlin, pp. 307–321, 1993.

    Chapter  Google Scholar 

  14. Marr, D. and Hildreth, E., Theory of Edge Detection, Proc. R. Soc. London, Vol. B, No. 207, pp. 187–217, 1980.

    Article  Google Scholar 

  15. Marr, D., Vision, Freeman, San Francisco, 1982.

    Google Scholar 

  16. Canny, J., A computational approach to edge detection, IEEE Trans. Pattern Anal. Mach. Intell., Vol. 8, No. 6, pp. 679–698, 1986.

    Article  Google Scholar 

  17. Cootes, T., Hill, A., Taylor, C., and Haslam, J., The use of active shape models for locating structures in medical images, In: Information Processing in Medical Imaging (IPMI’93), Barrett, H. H. and Gmitro, A. F., eds., No. 687 In Lecture Notes in Computer Science, Springer-Verlag, Berlin, pp. 33–47, 1993.

    Chapter  Google Scholar 

  18. Stetten, G. and Pizer, S., Medial node models to identify and measure objects in real-time 3D echocardiography, IEEE Trans. Med. Imaging, Vol. 18, No. 10, pp. 1025–1034, 1999.

    Article  Google Scholar 

  19. Wood, Z., Desbrun, M., Schröder, P., and Breen, D., Semi-regular mesh extraction from volumes, In: Proceedings of IEEE Visualization 2000, pp. 275–282, 2000.

    Google Scholar 

  20. Miller, J., Breen, D., Lorensen, W., O’Bara, R., and Wozny, M., Geometrically deformed Models: A method for extracting closed geometric models from volume data, In: SIGGRAPH’ 91 Proceedings, pp. 217–226, 1991.

    Google Scholar 

  21. Pentland, A. P., Perceptual organization and the representation of natural form, Artif. Intell., Vol. 28, pp. 293–331, 1986.

    Article  MathSciNet  Google Scholar 

  22. Terzopoulos, D. and Metaxas, D., Dynamic 3D models with local and global deformations: Deformable superquadrics, IEEE Trans. Pattern Anal. Mach. Intell., Vol. 13, No. 7, pp. 703–714, 1991.

    Article  Google Scholar 

  23. Gupta, A. and Bajcsy, R., Volumetric segmentation of range images of 3D objects using superquadric models, CVGIP: Image Underst., Vol. 58, No. 3, pp. 302–326, 1993.

    Article  Google Scholar 

  24. Muraki, S., Volumetric shape description of range data using “Blobby Model,” In: SIGGRAPH’ 91 Proceedings, Sederberg, T.W., ed., pp. 227–235, 1991.

    Google Scholar 

  25. Szeliski, R., Tonnesen, D., and Terzopoulos, D., Modeling surfaces of arbitrary topology with dynamic particles, In: Proc. Fourth Int. Conf. on Comp. Vision (ICCV’93), pp. 82–87, IEEE Computer Society Press, Berlin, 1993.

    Google Scholar 

  26. McInerney, T. and Terzopoulos, D., A dynamic finite element surface model for segmentation and tracking in multidimensional medical images with application to cardiac 4D image analysis, Comput. Med. Imaging Graph., Vol. 19, No. 1, pp. 69–83, 1995.

    Article  Google Scholar 

  27. Park, J., Metaxas, D., Young, A. A., and Axel, L., Deformable models with parameter functions for cardiac motion analysis from tagged MRI data, IEEE Trans. Med. Imaging, Vol. 15, No. 3, pp. 278–289, 1996.

    Article  Google Scholar 

  28. DeCarlo, D. and Metaxas, D., Shape evolution with structural and topological changes using blending, IEEE Trans. Pattern Anal. Mach. Intell., Vol. 20, No. 11, pp. 1186–1205, 1998.

    Article  Google Scholar 

  29. Ramamoorthi, R. and Arvo, J., Creating generative models from range images, In: SIGGRAPH’ 99 Proceedings, pp. 195–204, 1999.

    Google Scholar 

  30. Osher, S. and Sethian, J., Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., Vol. 79, pp. 12–49, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  31. Osher, S. and Fedkiw, R., Level Set Methods and Dynamic Implicit Surfaces, Springer, Berlin, 2002.

    Google Scholar 

  32. Sethian, J., A fast marching level set method for monotonically advancing fronts, In: Proceedings of the National Academy of Science, Vol. 93 of 4, pp. 1591–1595, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  33. Tsitsiklis, J., Efficient algorithms for globally optimal trajectories, IEEE Trans. Autom. Control, Vol. 40, No. 9, pp. 1528–1538, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  34. Adalsteinsson, D. and Sethian, J. A., A fast level set method for Propagating interfaces, J. Comput. Phys., Vol. 118, No. 2, pp. 269–277, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  35. Peng, D., Merriman, B., Osher, S., Zhao, H.-K., and Kang, M., A PDE-based fast local level set method, J. Comput. Phys., Vol. 155, pp. 410–438, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  36. Whitaker, R., A level-set approach to 3D reconstruction from range data, Int. J. Comput. Vis., Vol. 29, No. 3, pp. 203–231, 1998.

    Article  Google Scholar 

  37. Whitaker, R., Breen, D., Museth, K., and Soni, N., Segmentation of biological datasets using a level-set framework, In: Volume Graphics 2001, Chen, M. and Kaufman, A., eds., Springer, Vienna, pp. 249–263, 2001.

    Google Scholar 

  38. van den Boomgaard, R. and Smeulders, A. W. M., The morphological structure of images, the differential equations of morphological scalespace, IEEE Trans. Pattern Anal. Mach. Intell., Vol. 16, No. 11, pp. 1101–1113, 1994.

    Article  Google Scholar 

  39. Maragos, P., Differential morphology and image processing, IEEE Trans. Image Process., Vol. 5, No. 6, pp. 922–937, 1996.

    Article  Google Scholar 

  40. Requicha, A. and Voelcker, H., Boolean operations in solid modeling: Boundary evaluation and merging algorithms, Proc. IEEE, Vol. 73, No. 1, pp. 30–44, 1985.

    Article  Google Scholar 

  41. Whitaker, R. T., Volumetric deformable models: Active blobs, In: Visualization in Biomedical Computing, Robb, R. A., ed., SPIE, Mayo Clinic, Rochester, MN, pp. 122–134, 1994.

    Google Scholar 

  42. Sapiro, G., Geometric Partial Differential Equations and Image Analysis, Cambridge University Press, Cambridge, UK, 2001.

    MATH  Google Scholar 

  43. Museth, K., Breen, D., Zhukov, L., and Whitaker, R., Level set segmentation from multiple non-uniform volume datasets, In: Proc. IEEE Visualization Conference, pp. 179–186, 2002.

    Google Scholar 

  44. Shepard, D., A two-dimensional interpolation function for irregularly spaced points, In: Proc. ACM Nat. Conf., pp. 517–524, 1968.

    Google Scholar 

  45. Lancaster, P. and Salkauskas, K., Surfaces generated by moving least squares methods, Math. Comput., Vol. 37, pp. 141–159, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  46. Farwig, R., Multivariate interpolation of arbitrarily spaced data by moving least-squares methods, J. Comput. Appl. Math., Vol. 16, pp. 79–93, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  47. Zhao, H.-K., Osher, S., and Fedkiw, R., Fast surface reconstruction using the level set method, In: Proc. 1st IEEE Workshop on Variational and Level Set Methods, pp. 194–202, 2001.

    Google Scholar 

  48. Turk, G. and Levoy, M., Zippered polygon meshes from range images, In: Proc. of SIGGRAPH’ 94, pp. 311–318, ACM SIGGRAPH, 1994.

    Google Scholar 

  49. Curless, B. and Levoy, M., A volumetric method for building complex models from range images, In: Proc. SIGGRAPH’ 96, pp. 303–312, 1996.

    Google Scholar 

  50. Tamez-Pena, J., Totterman, S., and Parker, K., MRI isotropic resolution reconstruction from two orthogonal scans, In: Proc. SPIE Medical Imaging, Vol. 4322, pp. 87–97, 2001.

    Google Scholar 

  51. Goshtasby, A. and Turner, D. A., Fusion of short-axis and longaxis cardiac MR images, In: IEEE Workshop on Mathematical Methods in Biomedical Image Analysis, San Francisco, pp. 202–211, 1996.

    Google Scholar 

  52. Brejl, M. and Sonka, M., Directional 3D Edge Detection in anisotropic data: Detector design and performance assessment, Comput. Vis. Image Underst., Vol. 77, pp. 84–110, 2000.

    Article  Google Scholar 

  53. Haralick, R. M. and Shapiro, L. G., Computer and Robot Vision, Addison-Wesley, Reading, MA, 1991.

    Google Scholar 

  54. Press, W., Flannery, B., Teukolsky, S., and Vetterling, W., Numerical Recipes in C, 2nd edn., Cambridge University Press, New York, NY, 1992.

    MATH  Google Scholar 

  55. Basser, P. J., Mattielo, J., and Bihan, D. L., Estimation of the effective self-diffusion tensor from the NMR spin echo, J. Magn. Reson., B, Vol. 103, No. 3, pp. 247–254, 1994.

    Article  Google Scholar 

  56. Basser, P. J., Mattielo, J., and Bihan, D. L., MR diffusion tensor spectroscopy and imaging, Biophys. J., Vol. 66, No. 1, pp. 259–267, 1994.

    Article  Google Scholar 

  57. Basser, P. J. and Pierpaoli, C., Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI, J. Magn. Reson., B, Vol. 111, No. 3, pp. 209–219, 1996.

    Article  Google Scholar 

  58. Westin, C.-F., Peled, S., Gudbjartsson, H., Kikinis, R., and Jolesz, F. A., Geometrical diffusion measures for MRI from tensor basis analysis, In: Proceedings ISMRM 5th Annual Meeting, p. 1742, 1997.

    Google Scholar 

  59. Peled, S., Gudbjartsson, H., Westin, C., Kikinis, R., and Jolesz, F., Magnetic resonance imaging shows orientation and asymmetry in white matter fiber tracts, Brain Res., Vol. 780, pp. 27–33, 1998.

    Article  Google Scholar 

  60. Basser, P. and Pajevic, S., Statistical artifacts in diffusion tensor MRI caused by background noise, Magn. Reson. Med., Vol. 44, pp. 41–50, 2000.

    Article  Google Scholar 

  61. Ulug, A. and van Zijl, P., Orientation-independent diffusion imaging without tensor diagonalization: Anisotropy definitions based on physical attributes of the diffusion ellipsoid, J. Magn. Reson. Imaging, Vol. 9, pp. 804–813, 1999.

    Article  Google Scholar 

  62. Laidlaw, D., Ahrens, E., Kremers, D., Avalos, M., Jacobs, R., and Readhead, C., Visualizing diffusion tensor images of the mouse spinal cord, In: Proceedings IEEE Visualization’ 98, pp. 127–134, 1998.

    Google Scholar 

  63. Kindlmann, G. and Weinstein, D., Hue-balls and lit-tensors for direct volume rendering of diffusion tensor fields, In: Proc. IEEE Visualization’ 99, pp. 183–189, 1999.

    Google Scholar 

  64. Zhukov, L., Museth, K., Breen, D., Whitaker, R., and Barr, A., Level set modeling and segmentation of DT-MRI brain data, J. Electron. Imaging, Vol. 12, No. 1, pp. 125–133, 2003.

    Article  Google Scholar 

  65. Basser, P., Pajevic, S., Pierpaoli, C., Duda, J., and Aldroubi, A., In vivo fiber tractography using DT-MRI data, Magn. Reson. Med., Vol. 44, pp. 625–632, 2000.

    Article  Google Scholar 

  66. Poupon, C., Clark, C., Frouin, V., Regis, J., Bloch, I., Bihan, D. L., and Mangin, J.-F., Regularization of diffusion-based direction maps for the tracking of brain white matter fascicles, Neuroimage, Vol. 12, pp. 184–195, 2000.

    Article  Google Scholar 

  67. Singh, A., Goldgof, D., and Terzopoulos, D., eds., Deformable Models in Medical Image Analysis, IEEE Computer Society Press, Los Alamitos, CA, 1998.

    Google Scholar 

  68. Kindlmann, G. and Durkin, J., Semi-automatic generation of transfer functions for direct volume rendering, In: Proc. IEEE Symposium on Volume Visualization, pp. 79–86, 1998.

    Google Scholar 

  69. Zhukov, L., Weinstein, D., and Johnson, C., Independent component analysis for EEG source localization in realistic head model, IEEE Eng. Med. Biol., Vol. 19, pp. 87–96, 2000.

    Article  Google Scholar 

  70. Gibson, S. et al., Volumetric object modeling for surgical simulation, Med. Image Anal., Vol. 2, No. 2, pp. 121–132, 1998.

    Article  MathSciNet  Google Scholar 

  71. Bailey, M., Manufacturing isovolumes, In: Volume Graphics, Chen, M., Kaufman, A., and Yagel, R., eds., Springer-Verlag, London, pp. 79–83, 2000.

    Google Scholar 

  72. Lorensen, W. and Cline, H., Marching cubes: A high resolution 3D surface construction algorithm, In: Proc. SIGGRAPH’ 87, pp. 163–169, 1987.

    Google Scholar 

  73. Ramm, A. G. and Katsevich, A. I., The radon transform and local tomography, CRC Press, Inc., Boca Raton, FL, 1996.

    MATH  Google Scholar 

  74. Elangovan, V. and Whitaker, R., From Sinograms to Surfaces: A Direct Approach to the Segmentation of Tomographic Data, In: Proc. MICCAI 2001, Vol. 2208 of Lecture Notes in Computer Science, Springer, Berlin, 2001.

    Google Scholar 

  75. Herman, G. T., Image reconstruction from projections, The Fundamentals of Computerized Tomography, Academic Press, New York, 1980.

    MATH  Google Scholar 

  76. Roerdink, J. B. T. M., Computerized tomography and its applications: A guided tour, Nieuw Archief voor Wiskunde, Vol. 10, No. 3, pp. 277–308, 1992.

    MATH  MathSciNet  Google Scholar 

  77. Wang, G., Vannier, M., and Cheng, P., Iterative X-ray cone-beam tomography for metal artifact reduction and local region reconstruction, Microsc. Microanal., Vol. 5, pp. 58–65, 1999.

    Article  Google Scholar 

  78. Inouye, T., Image reconstruction with limited angle projection data, IEEE Trans. Nucl. Sci., Vol. NS-26, pp. 2666–2684, 1979.

    Google Scholar 

  79. Prince, J. L. and Willsky, A. S., Hierarchical reconstruction using geometry and sinogram restoration, IEEE Trans. Image Process., Vol. 2, No. 3, pp. 401–416, 1993.

    Article  Google Scholar 

  80. Herman, G. T. and Kuba, A., eds., Discrete Tomography: Foundations, Algorithms, and Applications, Birkhauser, Boston, 1999.

    MATH  Google Scholar 

  81. Thirion, J. P., Segmentation of tomographic data without image reconstruction, IEEE Trans. Med. Imaging, Vol. 11, pp. 102–110, 1992.

    Article  Google Scholar 

  82. Sullivan, S., Noble, A., and Ponce, J., On reconstructing curved object boundaries from sets of X-ray images, In: Proceedings of the 1995 Conference on Computer Vision, Virtual Reality, and Robotics in Medicine, Ayache, N., ed., Lecture Notes in Computer Science 905, pp. 385–391, Springer-Verlag, Berlin, 1995.

    Chapter  Google Scholar 

  83. Hanson, K., Cunningham, G., Jr., and Wolf, D., Tomographic reconstruction based on flexible geometric models, In: IEEE Int. Conf. on Image Processing (ICIP 94), pp. 145–147, 1994.

    Google Scholar 

  84. Battle, X. L., Cunningham, G. S., and Hanson, K. M., 3D tomographic reconstruction using geometrical models, In: Medical Imaging: Image Processing, Hanson, K. M., ed., Vol. 3034, pp. 346–357, SPIE, 1997.

    Google Scholar 

  85. Battle, X. L., Bizais, Y. J., Rest, C. L., and Turzo, A., Tomographic reconstruction using free-form deformation models, In: Medical Imaging: Image Processing, Hanson, K. M., ed., Vol. 3661, pp. 356–367, SPIE, 1999.

    Google Scholar 

  86. Battle, X. L., LeRest, C., Turzo, A., and Bizais, Y., Three-dimensional attenuation map reconstruction using geometrical models and freeform deformations, IEEE Trans. Med. Imaging, Vol. 19, No. 5, pp. 404–411, 2000.

    Article  Google Scholar 

  87. Mohammad-Djafari, A., Sauer, K., Khayi, Y., and Cano, E., Reconstruction of the shape of a compact object from a few number of projections, In: IEEE International Conference on Image Processing (ICIP), Vol. 1, pp. 165–169, 1997.

    Google Scholar 

  88. Caselles, V., Kimmel, R., and Sapiro, G., Geodesic active contours, In: 5th Int. Conf. on Comp. Vision, pp. 694–699, IEEE, IEEE Computer Society Press, 1995.

    Google Scholar 

  89. Santosa, F., A level-set approach for inverse problems involving obstacles, European Series in Applied and Industrial Mathematics: Control Optimization and Calculus of Variations, Vol. 1, pp. 17–33, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  90. Dorn, O., Miller, E. L., and Rappaport, C., A shape reconstruction method for electromagnetic tomography using adjoint fields and level sets, Inverse Prob.: Special issue on Electromagnetic Imaging and Inversion of the Earth’s Subsurface (Invited Paper), Vol. 16, pp. 1119–1156, 2000.

    MATH  MathSciNet  Google Scholar 

  91. Dorn, O., Miller, E. L., and Rappaport, C., Shape reconstruction in 2D from limited-view multi-frequency electromagnetic data, AMS series Contemp. Math., Vol. 278, pp. 97–122, 2001.

    MathSciNet  Google Scholar 

  92. Chan, T. F. and Vese, L. A., A level set algorithm for minimizing the Mumford-Shah functional in image processing, Tech. Rep. CAM 00-13, UCLA, Department of Mathematics, 2000.

    Google Scholar 

  93. Tsai, A., Yezzi, A., and Willsky, A., A curve evolution approach to smoothing and segmentation using the Mumford-Shah functional, In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 1, pp. 119–124, 2000.

    Google Scholar 

  94. Debreuve, E., Barlaud, M., Aubert, G., and Darcourt, J., Attenuation map segmentation without reconstruction using a level set method in nuclear medicine imaging, In: IEEE International Conference on Image Processing (ICIP), Vol. 1, pp. 34–38, 1998.

    Google Scholar 

  95. Yu, D. and Fessler, J., Edge-preserving tomographic reconstruction with nonlocal regularization, In: Proceedings of IEEE Intl. Conf. on Image Processing, pp. 29–33, 1998.

    Google Scholar 

  96. Whitaker, R. and Gregor, J., A maximum likelihood surface estimator for dense range data, IEEE Trans. Pattern Anal. Mach. Intell., Vol. 24, No. 10, pp. 1372–1387, 2002.

    Article  Google Scholar 

  97. Sapiro, G., Geometric Partial Differential Equations and Image Analysis, Cambridge University Press, Cambridge, 2001.

    MATH  Google Scholar 

  98. Lorigo, L., Faugeras, O., Grimson, E., Keriven, R., Kikinis, R., Nabavi, A., and Westin, C.-F., Co-dimension 2 geodesic active contours for the segmentation of tubular structures, In: Proceedings of IEEE Conf. on Comp. Vision and Pattern Recognition, pp. 444–452, 2000.

    Google Scholar 

  99. Koenderink, J. J., Solid Shape, MIT Press, Cambridge, MA, 1990.

    Google Scholar 

  100. do Carmo, M., Differential Geometry of Curves and Surfaces, Prentice-Hall, Englewood Cliffs, NJ, 1976.

    MATH  Google Scholar 

  101. Rudin, L., Osher, S., and Fatemi, C., Nonlinear total variation based noise removal algorithms, Physica D, Vol. 60, pp. 259–268, 1992.

    Article  MATH  Google Scholar 

  102. Whitaker, R. and Xue, X., Variable-conductance, level-set curvature for image denoising, In: Proc. IEEE International Conference on Image Processing, pp. 142–145, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic / Plenum Publishers, New York

About this chapter

Cite this chapter

Breen, D., Whitaker, R., Museth, K., Zhukov, L. (2005). Level Set Segmentation of Biological Volume Datasets. In: Suri, J.S., Wilson, D.L., Laxminarayan, S. (eds) Handbook of Biomedical Image Analysis. International Topics in Biomedical Engineering. Springer, Boston, MA. https://doi.org/10.1007/0-306-48551-6_8

Download citation

  • DOI: https://doi.org/10.1007/0-306-48551-6_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-48550-3

  • Online ISBN: 978-0-306-48551-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics