Skip to main content

A Basic Model for IVUS Image Simulation

  • Chapter
Handbook of Biomedical Image Analysis

Part of the book series: International Topics in Biomedical Engineering ((ITBE))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Ponte Ignacio C., La epidemia del siglo XXI. Director de la Sección de Cardiología preventiva del Hospital Dr. Domingo Luciani, http://www.aventispharma.com.ve/cardio.htm, El Llanito, Edo. Miranda Venezuela, 2003.

    Google Scholar 

  2. Jonathan, M. and Paul, G., Intravascular Ultrasound imaging. Edited by, Jonathan M. Tobis and Paul G. Yock, Churchil Livinstone Inc., 1992, New York, USA.

    Google Scholar 

  3. Yock, P. et al., Intravascular two dimensional catheter ultrasound, Initial clinical studies, abstracted, Circulations, No. 78(Suppl II): II-21, 1988.

    Google Scholar 

  4. Graham, S. et al., Assessment of arterial wall morphology using intravascular ultrasound in vitro and in patient, Circulations (Suppl II): II-56, 1989.

    Google Scholar 

  5. Metz Jonas, A., Paul, G., and Fitzgerald Peter, J., Intravascular ultrasound basic interpretation, In: Beyond Angiography, Intravascular Ultrasound, State of the Art, Vol. XX, Congress of the ESC Vienna-Austria, Stanford University School of Medicine, California, 1998.

    Google Scholar 

  6. Jumbo, G. and Raimund, E., Novel techniques of coronary artery imaging, In: Beyond Angiography, Intravascular Ultrasound, State of the Art, Vol. XX, Congress of the ESC Vienna-Austria, University of Essen, Germany, 1998.

    Google Scholar 

  7. Korte, Chris L., Intravascular Ultrasound Elastography, Article compilation of its doctoral thesis, Interuniversity Cardiology Institute of the Netherlands (ICIN), 1999.

    Google Scholar 

  8. Kearney, P. and Erbel, R., Imaging in the characterization laboratory, In: Beyond Angiography, Intravascular Ultrasound, State of the Art, Vol. XX, Congress of the ESC Viena-Austria, Johannes Gutenberg University, Mainz and University Clinic, Essen, Germany, 1998.

    Google Scholar 

  9. Berry, E. et al., Intravascular ultrasound-guided interventions in coronary artery disease, Tech. Rep., Healt Technology Assessment, NHS R D HTA Programme. A systematic literature review, with decisionsanalytic modelling of outcomes and cost-effectiveness, 2000.

    Google Scholar 

  10. Verhoef, W. A., Cloostermans, M. J., and Thijssen, J. M., The impulse response of a focused source with an arbitrary axisymmetric surface velocity distribution, J. Acoust. Soc. Am., Vol. 75, pp. 1717–1721, 1984.

    Article  Google Scholar 

  11. Fontaine, I., Bertrand, M., and Cloutier, G., A system-based approach to modelling the ultrasound signal backscattered by red blood cells, Biophys. J., Vol. 77, pp. 2387–2399, 1999.

    Article  Google Scholar 

  12. Fan, L., Herrington, D., and Santiago, P., Simulation of b-mode ultrasound to determine features of vessel for image analysis, Comput. Cardiol., Vol. 25, pp. 165–168, 1998.

    Google Scholar 

  13. Kinsler, L., Fundamentos de ac ústica, Noriega Editores, 1995, México DF.

    Google Scholar 

  14. Cheeke, D., Fundamentals and Applications of Ultrasonic Waves, CRC Press, Boca Raton, Florida, 2002.

    Google Scholar 

  15. Thijssen, J. and Oosterveld, B., Performance of echographic equipment and potentials for tissue characterization, NATOASI Series, Mathematics and Computer Science in Medical Imaging, Vol. F39, pp. 455–468, 1988.

    Google Scholar 

  16. Zagzebski, J., Essential of Ultrasound Physics, Mosby, A. ed., Harcourt Health Sciences Company, 1996. St. Louis, Missouri.

    Google Scholar 

  17. Arendt, Jesen J., Linear description of ultrasound imaging system, Notes for the International Summer School on Advanced Ultrasound Imaging, Technical University of Denmark, 2001.

    Google Scholar 

  18. Young, B. and Heath, J., Wheather’s, Histología Funcional, 4ta edición, Ediciones Hardcourt, S.A., Philadelphia, Pennsylvania 19106.

    Google Scholar 

  19. Mazumdar, J., Biofluids Mechanics, World Scientific, Dordrecht, 1992.

    Google Scholar 

  20. K. K. Shung and G. A. Thieme, Ultrasonic Scattering in Biological Tissues, CRC Press, Boca Raton, Florida, 1993.

    Google Scholar 

  21. Guyton A., Tratado de Fisiología Médica, Décima edición, McGraw-Hill Interamericana, Madrid, Espana.

    Google Scholar 

  22. Perelman L. et al., Observation of periodic fine structure in reflectance from biological tissue: A new technique for measuring nuclear size distribution, Phys. Rev. Lett., Vol. 80, No. 3, pp. 627–630, 1998.

    Article  Google Scholar 

  23. Duda, R., Hart, P., and Stork, D., Pattern Classification, John Wiley & Sons, Inc., New York, 2000.

    Google Scholar 

  24. Boston Scientific Corporation, Scimed division, The ABCs of IVUS, 1998.

    Google Scholar 

  25. Gonzales, R. and Wintz, P., Digital Image Processing, Addison-Wesley, Reading, Massachusetts 1987.

    Google Scholar 

  26. O’Donnell, M. and Silverstein, S., Optimum displacement for compound image generation in medical ultrasound, IEEE Trans. Ultrason., Ferroelectr. Freq. Control, Vol. 35, No. 4, pp. 470–476, 1988.

    Article  Google Scholar 

  27. Rosales, M. and Radeva, P., Empirical simulation model of intravascular ultrasound, Tech. Rep., No. 71, Centre de Visió per Computador, Universitat Autónoma de Barcelona, España, 2003.

    Google Scholar 

  28. Vogt, M. et al., Structural analysis of the skin using high frequency broadband ultrasound in the range from 30 to 140 mHz, In: IEEE International Ultrasonics Symposium, Sendai, Japan, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic / Plenum Publishers, New York

About this chapter

Cite this chapter

Rosales, M., Radeva, P. (2005). A Basic Model for IVUS Image Simulation. In: Suri, J.S., Wilson, D.L., Laxminarayan, S. (eds) Handbook of Biomedical Image Analysis. International Topics in Biomedical Engineering. Springer, Boston, MA. https://doi.org/10.1007/0-306-48551-6_1

Download citation

  • DOI: https://doi.org/10.1007/0-306-48551-6_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-48550-3

  • Online ISBN: 978-0-306-48551-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics