Skip to main content

Part of the book series: Biological Magnetic Resonance ((BIMR,volume 24/B))

Abstract

A personal view of trends in EPR technology is presented. It is unlikely that the fundamental structure of the field will change, but it will be strongly influenced by the rapid increase in computer power, digital storage, and signal processing capability. In the author’s laboratory current themes are resonator enhancement by electromagnetic field finite element modeling, analysis of noise, and digital detection and acquisition of data at multiple microwave frequencies. Some trends foreseen are (1) optimization of resonators for ultrasmall samples; (2) step-recovery pulse EPR in which the initial conditions may be established by a step in some experimental condition such as light level or nuclear frequency irradiation; (3) blurring of the distinction between pulse and CW EPR as temporal changes in the resonant condition of a “CW” measurement are changed in times of the order of spin relaxation times; and (4) increased use of ELDOR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  • Anderson, J.R., Mett, R.R. and Hyde, J.S. (2002). Cavities With Axially Uniform Fields For Use In Electron Paramagnetic Resonance. II. Free Space Generalization. Rev. Sci. Instrum. 73, 3027–3037.

    CAS  Google Scholar 

  • Brauer, J.R. (1997). IEEE Trans. Microwave Theory Tech., 45, 810.

    Google Scholar 

  • Camenisch, T.G., Klug, C.R., Ratke, J.J., Hubbell, W.L. and Hyde, J.S. (2002). Multiquantum EPR of Arrestin K267C-MT SL at 35 GHz. Proc. 44 th Rocky Mountain Conf. on Analytical Chemistry, p. 43.

    Google Scholar 

  • Christidis, T.C., Froncisz, W., Oles, T. and Hyde, J.S. (1994). Probehead with Interchangeable Loop-Gap Resonators and RF Coils for Multifrequency EPR/ENDOR. Rev. Sci. Instrum. 65, 63–67.

    Google Scholar 

  • Christidis, T.C., Mchaourab, H.S. and Hyde, J.S. (1996). Hyperfine Selectivity Using Multiquantum Electron-Nuclear-Electron Triple Resonance. J. Chem. Phys. 104, 9644–9646.

    Article  CAS  Google Scholar 

  • Forrer, J., Pfenninger, S., Sierra, G. Jeschke, G. and Schweiger, A., Wagner, B. and Weiland, T. (1996). Probeheads And Instrumentation For Pulse EPR And ENDOR Spectroscopy With Chirped Radio Frequency Pulses And Magnetic Field Steps. Appl. Magn. Reson. 10, 263–279.

    Article  Google Scholar 

  • Froncisz, W. and Hyde, J.S. (1982). The Loop-Gap Resonator: A New Microwave Lumped Circuit ESR Sample Structure. J. Magn. Reson. 47, 515–521.

    CAS  Google Scholar 

  • Froncisz, W., Oles, T. and Hyde, J.S. (1986) Q-Band Loop-Gap Resonator. Rev. Sci. Instrum. 57, 1095–1099.

    Article  CAS  Google Scholar 

  • Hwang, P.T.R. and Pusey, W.C. (1973) U.S. Patent 3,740,641.

    Google Scholar 

  • Hyde, J.S. (1995). Electron Paramagnetic Resonance in Handbook of Microwave Technology, Volume 2, Ishii, T. K., ed., pp. 365–402, Academic Press, New York.

    Google Scholar 

  • Hyde, J.S. (1965a). Gyromagnetic Resonance Spectroscopy, U.S. Patent 3,197,692.

    Google Scholar 

  • Hyde, J.S. (1965b). ENDOR Of Free Radicals In Solution. J. Chem Phys. 43, 1806–1818.

    Article  CAS  Google Scholar 

  • Hyde, J.S. (1966). Microwave Cavity Resonator, U.S. Patent 3,250,985.

    Google Scholar 

  • Hyde, J.S. (1975). EPR Spectrometer Resonant Cavity, U.S. Patent 3,878,454.

    Google Scholar 

  • Hyde, J.S. (1987). Narrow Cavity Low Cost EPR Spectrometer, U.S. Patent. 3,931,569.

    Google Scholar 

  • Hyde, J.S. (1998a). Multiquantum EPR. in Foundations of Modern EPR, G.R. Eaton, S.S. Eaton and K.M. Salikhov, eds., pp. 741–757, World Scientific, New York.

    Google Scholar 

  • Hyde, J.S. (1998b). EPR at Varian: 1954–1974. in Foundations of Modern EPR, G.R. Eaton, S.S. Eaton and K.M. Salikhov, eds., pp. 695–716, World Scientific, New York.

    Google Scholar 

  • Hyde, J.S. and Froncisz, W. (1989). Loop Gap Resonators. In Advanced EPR: Applications in Biology and Biochemistry, A.J. Hoff, ed., pp. 277–306, Elsevier, Amsterdam.

    Google Scholar 

  • Hyde, J.S., Froncisz, W. and Kusumi, A. (1982). Dispersion Electron Spin Resonance with the Loop-Gap Resonator. Rev. Sci. Instrum. 53, 1934–1937.

    Article  Google Scholar 

  • Hyde, J.S., Newton, M.A., Strangeway, R.A., Camenisch, T.G. and Froncisz, W. ( 1991). Electron Paramagnetic Resonance Q-Band Bridge with GaAs Field-Effect Transistor Signal Amplifier and Low-Noise Gunn Diode Oscillator. Rev. Sci. Instrum. 62, 2969–2975.

    Article  CAS  Google Scholar 

  • Hyde, J.S., Mett R.R. and Anderson, J.R. (2002). Cavities With Axially Uniform Fields For Use In Electron Paramagnetic Resonance. III. Re-Entrant Geometries. Rev. Sci. Instrum. 73, pp. 4003–4009.

    Article  CAS  Google Scholar 

  • Korber, MR., Teuthorn, D. and Lockie, D. (2002). YIGs Tune High-Speed Millimeter-Wave Radios. Microwaves & RF, pp. 92–100 (July).

    Google Scholar 

  • Lesniewski, P. and Hyde, J.S. (1990). Phase Noise Reduction of a 19 GHz Varactor-Tuned Gunn Oscillator for Electron Paramagnetic Resonance Spectroscopy. Rev. Sci. Instrum. 61, 2248–2250.

    Article  CAS  Google Scholar 

  • Mchaourab, H.S., Christidis, T.C., Froncisz, W., Sczaniecki, P.B. and Hyde, J.S. (1991). Multiple-Quantum Electron-Electron Double Resonance. J. Magn. Reson. 92, 429–433.

    CAS  Google Scholar 

  • Mchaourab, H.S., Christidis, T.C. and Hyde, J.S. (1993). Continuous Wave Multiquantum Electron Paramagnetic Resonance Spectroscopy. IV. Multiquantum Electron-Nuclear Double Resonance. J. Chem. Phys. 99, 4975–4985.

    Article  CAS  Google Scholar 

  • Mett, R.R., Froncisz, W. and Hyde, J.S. (2001). Axially Uniform Resonant Cavity Modes For Potential Use In Electron Paramagnetic Resonance Spectroscopy. Rev. Sci. Instrum. 72, 4188–4200.

    Article  CAS  Google Scholar 

  • Nelson, F.A. and Baker, G.A. (1967), Gyromagnetic Resonance Apparatus Utilizing Two Sample Signal Comparison, U.S. Patent 3,348,136.

    Google Scholar 

  • Newton, M.E. and Hyde, J.S. (1991). ENDOR at S-Band (2–4 GHz) Microwave Frequencies. J. Magn. Reson., 95, 80–87.

    CAS  Google Scholar 

  • Ono, M. and Uchida, M. (1998). Analytical Method For Evaluating Flavor Stability Of Fermented Alcoholic Beverages Using Electron Spin Resonance, U.S. Patent 5,811,305.

    Google Scholar 

  • Pace, M.D., Christidis, T.C. and Hyde, J.S. (1993). S-Band ENDOR of Hyperfine Interactions of 1 H and 14 N Nuclei in Trinitrophenylmethylnitroxide. J. Magn. Reson., 102A, 101–104.

    Google Scholar 

  • Pfenninger, S., Forrer, J. and Schwieger, A. (1988). Bridged Loop-Gap Resonator: A Resonant Structure For Pulsed ESR Transparent To High-Frequency Radiation. Rev. Sci. Instrum. 59, 752–760.

    Article  Google Scholar 

  • Pfenninger, S., Froncisz, W. and Hyde, J.S. (1995). Noise Analysis of EPR Spectrometers with Cryogenic Microwave Preamplifiers. J. Magn. Reson. 113A, 32–39.

    Google Scholar 

  • Piasecki, W., Froncisz, W. and Hyde, J.S. (1996). Bimodal Loop-Gap Resonator. Rev. Sci. Instrum. 67, 1896–1904.

    Article  CAS  Google Scholar 

  • Piette, L.H., Ludwig, P., Adams, R.N. (1962). EPR And Electrochemistry. Studies Of Electrochemically Generated Radical Ions In Aqueous Solution, Anal. Chem., 34, 916.

    Article  CAS  Google Scholar 

  • Pusey III, W.C. (1973). How To Evaluate Potential Gas And Oil Source Rocks. World Oil, April

    Google Scholar 

  • Rempel, R.C., Ward, C.E., Sullivan, R.T., St. Clair, M.W., Weaver, H.E. (1964). Gyromagnetic Resonance Method and Apparatus, U.S. Patent 3,122,703.

    Google Scholar 

  • Rinard, G.A., Quine, R.W., Song, R., Eaton, G.R., Eaton, S.S. (1999). Absolute EPR Spin Echo and Noise Intensities. J. Magn. Reson. 140, 69–83.

    PubMed  CAS  Google Scholar 

  • Robins, R.J. (1982). Phase Noise in Signal Sources, Peregrinus Ltd. on behalf of the Institute of Electrical Engineers, Herts, England.

    Google Scholar 

  • Saraceno, A.J., Fanale, D.I. and Coggeshall, N.D. (1961). An Electron Paramagnetic Resonance Investigation of Vanadium in Petroleum Oils. Anal. Chem 33, 500.

    Article  CAS  Google Scholar 

  • Saraceno, A.J. (1963). Determination of Vanadium Content of Hydrocarbon Oils by Electron Paramagnetic Resonance Spectrometry, U.S. Patent 3,087,888 (reissued 1967).

    Google Scholar 

  • Schwieger, A. and Jeschke, G. (2001). Principles Of Pulse Electron Paramagnetic Resonance, Oxford University Press, New York.

    Google Scholar 

  • Strangeway, R.A., Mchaourab, H.S., Luglio, J., Froncisz, W. and Hyde, J.S. (1995). A General Purpose Multiquantum Electron Paramagnetic Resonance Spectrometer. Rev. Sci. Instrum. 66, 4516–4528.

    Article  CAS  Google Scholar 

  • Symons, M.C.R. (1995). Whole Body Electron Spin Resonance Imaging Spectrometer, In Bioradicals Detected By ESR Spectroscopy, H. Ohya-Nishiguchi and L. Packer, eds., pp. 93–102, Birkhäuser Verlag, Basel, Switzerland.

    Google Scholar 

  • Uchida, M. and Ono, M. (1996). Improvement For Oxidative Flavor Stability Of Beer — Role Of OH-Radical In Beer. J. Am. Soc. Brew. Chem 54, 198–204.

    CAS  Google Scholar 

  • Uchida, M., Suga, S. and Ono, M. (1996). Improvement For Oxidative Flavour Stability Of Beer — Rapid Prediction Method For Beer Flavour Stability By Electron Spin Resonance Spectroscopy. J. Am. Soc. Brew. Chem 54, 205–211.

    CAS  Google Scholar 

  • Uchida, M. and Ono, M. (2000). Technological Approach To Improve Beer Flavor Stability: Analysis Of The Effect Of Brewing Processes On Beer Flavor Stability By The Electron Spin Resonance Method. J. Am. Soc. Brew. Chem. 58, 8–13.

    CAS  Google Scholar 

  • Varian Associates Technical Information Bulletin: Signal Amplitudes in Electron Paramagnetic Resonance, Fall 1965, pp. 10–13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic/Plenum Publishers

About this chapter

Cite this chapter

Hyde, J.S. (2005). Trends in EPR Technology. In: Eaton, S.R., Eaton, G.R., Berliner, L.J. (eds) Biomedical EPR, Part B: Methodology, Instrumentation, and Dynamics. Biological Magnetic Resonance, vol 24/B. Springer, Boston, MA. https://doi.org/10.1007/0-306-48533-8_13

Download citation

  • DOI: https://doi.org/10.1007/0-306-48533-8_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-48532-9

  • Online ISBN: 978-0-306-48533-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics