Fatty Acids and Mitochondria, Cell Growth and Injury: Broader Implications


Fatty Acid Oxidation Trans Fatty Acid Ischemic Precondition Citric Acid Cycle Arterioscler Thromb Vasc Biol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7.5. References

  1. 1.
    X. Chen, N. Iqbal, and G. Boden, The effects of free fatty acids on gluconeogenesis and glycogenolysis in normal subjects., J Clin Invest 103:365–372 (1999).PubMedGoogle Scholar
  2. 2.
    A. Dresner, D. Laurent, M. Marcucci, et al., Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity., J Clin Invest 103:253–259 (1999).PubMedGoogle Scholar
  3. 3.
    M._E. Griffin, M. J. Marcucci, G. W. Cline, et al., Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade, Diabetes 48:1270–4 (1999).PubMedGoogle Scholar
  4. 4.
    K. Cusi, K. Maezono, A. Osman, et al., Insulin resistance differentially affects the PI 3-kinase-and MAP kinase-mediated signaling in human muscle., J Clin Invest 105:311–320 (2000).PubMedGoogle Scholar
  5. 5.
    H. Steinberg, G. Paradisi, G. Hook, K. Crowder, J. Cronin, and A. Baron, Free fatty acid elevation impairs insulin-mediated vasodilation and nitric oxide production, Diabetes 49:1231–1238 (2000).PubMedGoogle Scholar
  6. 6.
    P. Arner, Insulin resistance in type 2 diabetes: role of fatty acids, Diabetes Metab Res Rev 18Suppl 2:S5–9 (2002).PubMedGoogle Scholar
  7. 7.
    G. Boden, and G. I. Shulman, Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and beta-cell dysfunction, Eur J Clin Invest 32Suppl 3:14–23 (2002).PubMedGoogle Scholar
  8. 8.
    Y. Kruszynska, D. Worrall, J. Ofrecio, J. Frias, G. Macaraeg, and J. Olefsky, Fatty acid-induced insulin resistance: decreased muscle PI3K activation but unchanged Akt phosphorylation, J Clin Endocrinol Metab 87:226–234 (2002).CrossRefPubMedGoogle Scholar
  9. 9.
    T. K. Lam, H. Yoshii, C. A. Haber, et al., Free fatty acid-induced hepatic insulin resistance: a potential role for protein kinase C-delta, Am J Physiol Endocrinol Metab 283:E682–91 (2002).PubMedGoogle Scholar
  10. 10.
    J. McGarry, Banting lecture, 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes, Diabetes 51:7–18 (2002).PubMedGoogle Scholar
  11. 11.
    C. L. Soltys, L. Buchholz, M. Gandhi, A. S. Clanachan, K. Walsh, and J. R. Dyck, Phosphorylation of cardiac protein kinase B is regulated by palmitate, Am J Physiol Heart Circ Physiol 283:H1056–64 (2002).PubMedGoogle Scholar
  12. 12.
    C. Yu, Y. Chen, G. W. Cline, et al., Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle, J Biol Chem 277:50230–50236 (2002).PubMedGoogle Scholar
  13. 13.
    Z. Jiang, Y. Lin, A. Clemont, et al., Characterization of selective resistance to insulin signaling in the vasculature of obese Zucker (fa/fa) rats, J Clin Invest 104:447–457 (1999).PubMedGoogle Scholar
  14. 14.
    R. Behal, D. Buxton, J. Robertson, and M. Olson, Regulation of the pyruvate dehydrogenase multienzyme complex., Annu Rev Nutr 13:497–520 (1993).CrossRefPubMedGoogle Scholar
  15. 15.
    R. Scholz, M. Olson, A. Schwab, U. Schwabe, C. Noell, and W. Braun, The effect of fatty acids on the regulation of pyruvate dehydrogenase in perfused rat liver, Eur J Biochem 86:519–530 (1978).CrossRefPubMedGoogle Scholar
  16. 16.
    T. A. Hopkins, M. C. Sugden, M. J. Holness, R. Kozak, J. R. Dyck, and G. D. Lopaschuk, Control of cardiac pyruvate dehydrogenase activity in peroxisome proliferator-activated receptor-alpha transgenic mice, Am J Physiol Heart Circ Physiol 285:H270–6 (2003).PubMedGoogle Scholar
  17. 17.
    S. Mills, D. Foster, and J. Mcgarry, Interaction of malonyl-CoA and related compounds with mitochondria from different rat tissues: Relationship between ligand binding and inhibition of carnitine palmitoyltransferase I, Biochem J 214:83–91 (1983).PubMedGoogle Scholar
  18. 18.
    L. Drynan, P. Quant, and V. Zammit, Flux control exerted by mitochondrial outer membrane carnitine palmitoyltransferase over beta-oxidation, ketogenesis and tricarboxylic acid cycle activity in hepatocytes isolated from rats in different metabolic states., Biochem J 317:791–795 (1996A).PubMedGoogle Scholar
  19. 19.
    L. Drynan, P. Quant, and V. Zammit, The role of changes in the sensitivity of hepatic mitochondrial overt carnitine palmitoyltransferase in determining the onset of the ketosis of starvation in the rat., Biochem J 318:767–770 (1996B).PubMedGoogle Scholar
  20. 20.
    J. Sleboda, K. Risan, O. Spydevold, and J. Bremer, Short-term regulation of carnitine palmitoyltransferase I in cultured rat hepatocytes: spontaneous inactivation and reactivation by fatty acids, Biochim Biophys Acta 1436:541–549 (1999).PubMedGoogle Scholar
  21. 21.
    M. Young, G. Goodwin, J. Ying, et al., Regulation of cardiac and skeletal muscle malonyl-CoA decarboxylase by fatty acids, Am J Physiol Endocrinol Metab 280:E471–E479 (2001 A).PubMedGoogle Scholar
  22. 22.
    M. Mutomba, H, Yan, M. Konyavko, et al., Regulation of the activity of caspases by L-carnitine and palmitoylcarnitine, FEBS Letters 478:19–25 (2000).CrossRefPubMedGoogle Scholar
  23. 23.
    L._D. Lawson, and F. A. Kummerow, beta-Oxidation of the coenzyme A esters of elaidic, oleic, and stearic acids and their full-cycle intermediates by rat heart mitochondria, Biochim Biophys Acta 573:245–54 (1979).PubMedGoogle Scholar
  24. 24.
    T. Flatmark, A. Nilsson, J. Kvannes, et al., On the mechanism of induction of the enzyme systems for peroxisomal beta-oxidation of fatty acids in rat liver by diets rich in partially hydrogenated fish oil, Biochim Biophys Acta 962:122–30 (1988).PubMedGoogle Scholar
  25. 25.
    A. Ascherio, M. B. Katan, P. L. Zock, M. J. Stampfer, and W. C. Willett, Trans fatty acids and coronary heart disease, N Engl J Med 340:1994–8 (1999).CrossRefPubMedGoogle Scholar
  26. 26.
    G. Klug, J. Krause, A. Ostlund, O. Knoll, and D. Brdiczka, Alterations in liver mitochondrial function as a result of fasting and exhaustive exercise, Biochim Biophys Acta 764:272–282 (1984).PubMedGoogle Scholar
  27. 27.
    G. Beutner, A. Rück, B. Riede, and D. Brdiczka, Complexes between porin, hexokinase, mitochondrial creatine kinase and adenylate translocates display properties of the permeability transition pore: Implication for regulation of permeability transition by the kinases., Biochim Biophys Acta 1368:7–18 (1998).PubMedGoogle Scholar
  28. 28.
    L. L. Listenberger, X. Han, S. E. Lewis, et al., Triglyceride accumulation protects against fatty acid-induced lipotoxicity, Proc Natl Acad Sci U S A 100:3077–82 (2003).CrossRefPubMedGoogle Scholar
  29. 29.
    M. Paumen, Y. Ishida, M. Muramatsu, M. Yamamoto, and T. Honjo, Inhibition of carnitine palmitoyltransferase I augments sphingolipid synthesis and palmitateinduced apoptosis, J Biol Chem 272:3324–3329 (1997B).PubMedGoogle Scholar
  30. 30.
    V. Skulachev, Fatty acid circuit as a physiological mechanism of uncoupling of oxidative phosphorylation, FEBS Lett 294:158–162 (1991).CrossRefPubMedGoogle Scholar
  31. 31.
    L. Wojtczak, and P. Schöfeld, Effect of fatty acids on energy coupling processes in mitochondria, Biochim Biophys Acta 1183:41–57 (1993).PubMedGoogle Scholar
  32. 32.
    L. Wojtczak, and M. Wiêckowski, The mechanisms of fatty acid-induced proton permeability of the inner mitochondrial membrane, J Bioenerg Biomembranes 31:447–455 (1999A).Google Scholar
  33. 33.
    P. Schöfeld, M. Wiêckowski, and L. Wojtczak, Thyroid hormone-induced expression of the ADP/ATP carrier and its effect on fatty acid-induced uncoupling of oxidative phosphorylation, FEBS Lett 416:19–22 (1997A).Google Scholar
  34. 34.
    P. Schöfeld, and R. Bohnensack, Fatty acid-promoted mitochondrial permeability transition by membrane depolarization and binding to the ADP/ATP carrier, FEBS Lett 420:167–170 (1997B).Google Scholar
  35. 35.
    K. Chavin, S. Yang, H. Lin, et al., Obesity induces expression of uncoupling protein-2 in hepatocytes and promotes liver ATP depletion., J Biol Chem 274:5692–5700 (1999).CrossRefPubMedGoogle Scholar
  36. 36.
    K. Echtay, D. Roussel, J. St-Pierre, et al., Superoxide activates mitochondrial uncoupling proteins., Nature 415:96–99 (2002).CrossRefPubMedGoogle Scholar
  37. 37.
    D. Rolfe, A. Hulbert, and M. Brand, Characteristics of mitochondrial proton leak and control of oxidative phosphorylation in the major oxygen-consuming tissues of the rat, Biochim Biophys Acta 1188:405–416 (1994).PubMedGoogle Scholar
  38. 38.
    I. Reynolds, and T. Hastings, Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation, J Neurosci 15:3318–3327 (1995).PubMedGoogle Scholar
  39. 39.
    V. Skulachev, Role of uncoupled and non-coupled oxidations in maintenance of safely low levels of oxygen and its one-electron reductants, Quart Rev Biophys 29:169–202 (1996).Google Scholar
  40. 40.
    A. Nègre-Salvayre, C. Hirtz, G. Carrera, et al., A role for uncoupling protein-2 as a regulator of mitochondrial hydrogen peroxide generation, FASEB J 11:809–815 (1997).PubMedGoogle Scholar
  41. 41.
    A. Stout, H. Raphael, B. Kanterewicz, E. Klann, and I. Reynolds, Glutamate-induced neuron death requires mitochondrial calcium uptake, Nature Neurosci 1:366–373 (1998).PubMedGoogle Scholar
  42. 42.
    S. Korshunov, O. Kokina, E. Ruuge, V. Skulachev, and A. Starkov, Fatty acids as natural uncouplers preventing generation of O2-and H2O2 by mitochondria in the resting state, FEBS Letts 435:215–218 (1998).CrossRefGoogle Scholar
  43. 43.
    S. Tanaka, L. Mohr, E. Schmidt, K. Sugimachi, and J. Wands, Biological effects of human insulin receptor substrate-1 overexpression in hepatocytes, Hepatol 26:598–604 (1997).Google Scholar
  44. 44.
    R. Gredilla, G. Barja, and M. Lopez-Torres, Effect of short-term caloric restriction on H2O2 production and oxidative DNA damage in rat liver mitochondria and location of the free radical source, J Bioenerg Biomembr 33:279–287 (2001).CrossRefPubMedGoogle Scholar
  45. 45.
    B. Grasl-Kraupp, W. Bursch, B. Ruttkay-Nedecky, A. Wagner, B. Lauer, and R. Schulte-Hermann, Food restriction eliminates preneoplastic cells through apoptosis and antagonizes carcinogenesis in rat liver, Proc Natl Acad Sci USA 91:9995–9999 (1994).PubMedGoogle Scholar
  46. 46.
    K. Kolaja, K. Bunting, and J. Klaunig, Inhibition of tumor promotion and hepatocellular growth by dietary restriction in mice, Carcinogenesis 17:1657–1664 (1996).PubMedGoogle Scholar
  47. 47.
    V. D. Longo, and C. E. Finch, Evolutionary medicine: from dwarf model systems to healthy centenarians?, Science 299:1342–6 (2003).CrossRefPubMedGoogle Scholar
  48. 48.
    X. Du, D. Edelstein, L. Rossetti, et al., Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation., Proc Natl Acad Sci USA 97:12222–12226 (2000).PubMedGoogle Scholar
  49. 49.
    T. Nishikawa, D. Edelstein, X. Du, et al., Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage, Nature 404:787–790 (2000).PubMedGoogle Scholar
  50. 50.
    S. I. Itani, A. K. Saha, T. G. Kurowski, H. R. Coffin, K. Tornheim, and N. B. Ruderman, Glucose autoregulates its uptake in skeletal muscle: involvement of AMPactivated protein kinase, Diabetes 52:1635–40 (2003).PubMedGoogle Scholar
  51. 51.
    S. Srinivasan, E. Bernal-Mizrachi, M. Ohsugi, and M. A. Permutt, Glucose promotes pancreatic islet beta-cell survival through a PI 3-kinase/Akt-signaling pathway, Am J Physiol Endocrinol Metab 283:E784–93 (2002).PubMedGoogle Scholar
  52. 52.
    K. Maedler, P. Sergeev, F. Ris, et al., Glucose-induced beta cell production of IL-lbeta contributes to glucotoxicity in human pancreatic islets, J Clin Invest 110:851–60 (2002).CrossRefPubMedGoogle Scholar
  53. 53.
    D. T. Stein, B. E. Stevenson, M. W. Chester, et al., The insulinotropic potency of fatty acids is influenced profoundly by their chain length and degree of saturation, J Clin Invest 100:398–403 (1997).PubMedGoogle Scholar
  54. 54.
    K. Maedler, J. Oberholzer, P. Bucher, G. A. Spinas, and M. Y. Donath, Monounsaturated Fatty Acids Prevent the Deleterious Effects of Palmitate and High Glucose on Human Pancreatic beta-Cell Turnover and Function, Diabetes 52:726–33 (2003).PubMedGoogle Scholar
  55. 55.
    R. Collins, J. Armitage, S. Parish, P. Sleigh, and R. Peto, MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin in 5963 people with diabetes: a randomised placebo-controlled trial, Lancet 361:2005–16 (2003).CrossRefPubMedGoogle Scholar
  56. 56.
    W. Palinski, T. Koschinsky, S. W. Butler, et al., Immunological evidence for the presence of advanced glycosylation end products in atherosclerotic lesions of euglycemic rabbits, Arterioscler Thromb Vase Biol 15:571–82 (1995).Google Scholar
  57. 57.
    M. Anderson, J. Requena, J. Crowley, S. Thorpe, and J. Heinecke, The myeloperoxidase system of human phagocytes generates N-epsilon-(carboxymethyl)lysine on proteins: a mechanism for producing advanced glycation end products at sites of inflammation., J Clin Invest 104:103–113 (1999).PubMedGoogle Scholar
  58. 58.
    T. Sakaguchi, S. F. Van, S. D. Yan, et al., Central role of RAGE-dependent neointimal expansion in arterial restenosis, J Clin Invest 111:959–72 (2003).CrossRefPubMedGoogle Scholar
  59. 59.
    T._J. Huang, S. A. Price, L. Chilton, et al., Insulin prevents depolarization of the mitochondrial inner membrane in sensory neurons of type 1 diabetic rats in the presence of sustained hyperglycemia, Diabetes 52:2129–36 (2003).PubMedGoogle Scholar
  60. 60.
    W._C. Duckworth, M. McCarren, and C. Abraira, Glucose control and cardiovascular complications: the VA Diabetes Trial, Diabetes Care 24:942–5 (2001 A).PubMedGoogle Scholar
  61. 61.
    W. C. Duckworth, Hyperglycemia and cardiovascular disease, Curr Atheroscler Rep 3:383–91 (2001B).PubMedGoogle Scholar
  62. 62.
    S. Yamagishi, T. Okamoto, S. Amano, et al., Palmitate-induced apoptosis of microvascular endothelial cells and pericytes, Mol Med 8:179–84 (2002).PubMedGoogle Scholar
  63. 63.
    I. Sussman, M. Erecinska, and D. F. Wilson, Regulation of cellular energy metabolism: the Crabtree effect, Biochim Biophys Acta 591:209–23 (1980).PubMedGoogle Scholar
  64. 64.
    L. Wojtczak, V. Teplova, K. Bogucka, et al., Effect of glucose and deoxyglucose on the redistribution of calcium in ehrlich ascites tumour and Zajdela hepatoma cells and its consequences for mitochondrial energetics: Further arguments for the role of Ca(2+) in the mechanism of the crabtree effect, Eur J Biochem 263:495–501 (1999B).CrossRefPubMedGoogle Scholar
  65. 65.
    S. Rodriguez-Enriquez, O. Juarez, J. Rodriguez-Zavala, and R. Moreno-Sanchez, Multisite control of the Crabtree effect in ascites hepatoma cells, Eur J Biochem 268:2512–2519 (2001).CrossRefPubMedGoogle Scholar
  66. 66.
    V. Lemeshko, Model of the outer membrane potential generation by the inner membrane of mitochondria, Biophys J 82:684–692 (2002).PubMedGoogle Scholar
  67. 67.
    J. McGarry, and N. Brown, Reconstitution of purified, active and malonyl-CoA-sensitive rat liver carnitine palmitoyltransferase I: relationship between membrane environment and malonyl-CoA sensitivity, Biochem J 349:179–187 (2000).CrossRefPubMedGoogle Scholar
  68. 68.
    M. Hediger, and T. Welbourne, Glutamate transport and metabolism Introduction: Glutamate transport, metabolism, and physiological responses, Am J Physiol 277:F477–F480 (1999).PubMedGoogle Scholar
  69. 69.
    D. Hässinger, Hepatic glutamine transport and metabolism, Adv Enzymol Rel Areas Molec Biol 72:43–86 (1998).Google Scholar
  70. 70.
    Z. Kovacevic, and J. Mcgivan, Mitochondrial metabolism of glutamine and glutamate and its physiological significance, Physiol Rev 63:547–605 (1983).PubMedGoogle Scholar
  71. 71.
    R. Hankard, M. Haymond, and D. Darmaun, Role of glutamine as a glucose precursor in fasting humans, Diabetes 46:1535–1541 (1997).PubMedGoogle Scholar
  72. 72.
    P. Cryer, M. Haymond, J. Santiago, and S. Shah, Norepinephrine and epinephrine release and adrenergic mediation of smoking-associated hemodynamic and metabolic events., New Engl J Med 295:573–7 (1976).PubMedGoogle Scholar
  73. 73.
    M. Hellerstein, N. Benowitz, R. Neese, et al., Effects of cigarette smoking and its cessation on lipid metabolism and energy expenditure in heavy smokers, J Clin Invest 93:265–72 (1994).PubMedGoogle Scholar
  74. 74.
    K. Fattinger, D. Verotta, and N. Benowitz, Pharmacodynamics of acute tolerance to multiple nicotinic effects in humans., J Pharmacol Exp Therapeutics 281:1238–46 (1997).Google Scholar
  75. 75.
    J. Rincón, A. Krook, D. Galuska, H. Wallberg-Henriksson, and J. Zierath, Altered skeletal muscle glucose transport and blood lipid levels in habitual cigarette smokers, Clin Physiol 19:135–142 (1999).PubMedGoogle Scholar
  76. 76.
    S. Mittelman, G. Van Citters, E. Kirkman, and R. Bergman, Extreme insulin resistance of the central adipose depot in vivo, Diabetes 51:755–761 (2002).PubMedGoogle Scholar
  77. 77.
    T. Finkel, and N. Holbrook, Oxidants, oxidative stress and the biology of ageing., Nature 408:239–247 (2000B).CrossRefPubMedGoogle Scholar
  78. 78.
    J. Liu, D. W. Killilea, and B. N. Ames, Age-associated mitochondrial oxidative decay: improvement of carnitine acetyltransferase substrate-binding affinity and activity in brain by feeding old rats acetyl-L-carnitine and/or R-alpha-lipoic acid, Proc Natl Acad Sci U S A 99:1876–81 (2002).PubMedGoogle Scholar
  79. 79.
    S. Hekimi, and L. Guarente, Genetics and the specificity of the aging process, Science 299:1351–4 (2003).CrossRefPubMedGoogle Scholar
  80. 80.
    R. Ockner, R. Kaikaus, and N. Bass, Fatty acid metabolism and the pathogenesis of hepatocellular carcinoma: review and hypothesis, Hepatology 18:669–676 (1993).PubMedGoogle Scholar
  81. 81.
    G. M. Chisolm, and D. Steinberg, The oxidative modification hypothesis of atherogenesis: an overview, Free Radic Biol Med 28:1815–26 (2000).PubMedGoogle Scholar
  82. 82.
    J. P. Gaut, and J. W. Heinecke, Mechanisms for oxidizing low-density lipoprotein. Insights from patterns of oxidation products in the artery wall and from mouse models of atherosclerosis, Trends Cardiovasc Med 11:103–12 (2001).CrossRefPubMedGoogle Scholar
  83. 83.
    J._L. Witztum, and D. Steinberg, The oxidative modification hypothesis of atherosclerosis: does it hold for humans?, Trends Cardiovasc Med 11:93–102 (2001).CrossRefPubMedGoogle Scholar
  84. 84.
    C. Hwang, A. J. Sinskey, and H. F. Lodish, Oxidized redox state of glutathione in the endoplasmic reticulum, Science 257:1496–502 (1992).PubMedGoogle Scholar
  85. 85.
    A. R. Frand, J. W. Cuozzo, and C. A. Kaiser, Pathways for protein disulphide bond formation, Trends Cell Biol 10:203–10 (2000).CrossRefPubMedGoogle Scholar
  86. 86.
    B. P. Tu, and J. S. Weissman, The FAD-and O(2)-Dependent Reaction Cycle of Erol-Mediated Oxidative Protein Folding in the Endoplasmic Reticulum, Mol Cell 10:983–94 (2002).CrossRefPubMedGoogle Scholar
  87. 87.
    D. van der Vlies, E. H. Pap, J. A. Post, J. E. Celis, and K. W. Wirtz, Endoplasmic reticulum resident proteins of normal human dermal fibroblasts are the major targets for oxidative stress induced by hydrogen peroxide, Biochem J 366:825–30 (2002).PubMedGoogle Scholar
  88. 88.
    R. A. Davis, and T. Y. Hui, 2000 George Lyman Duff Memorial Lecture: atherosclerosis is a liver disease of the heart, Arterioscler Thromb Vasc Biol 21:887–98 (2001).PubMedGoogle Scholar
  89. 89.
    I. Staprans, J. H. Rapp, X. M. Pan, and K. R. Feingold, Oxidized lipids in the diet are incorporated by the liver into very low density lipoprotein in rats, J Lipid Res 37:420–30 (1996).PubMedGoogle Scholar
  90. 90.
    M. Penumetcha, N. Khan, and S. Parthasarathy, Dietary oxidized fatty acids: an atherogenic risk?, J Lipid Res 41:1473–80 (2000).PubMedGoogle Scholar
  91. 91.
    R. Salvayre, N. Auge, H. Benoist, and A. Negre-Salvayre, Oxidized low-density lipoprotein-induced apoptosis, Biochim Biophys Acta 1585:213–21 (2002).PubMedGoogle Scholar
  92. 92.
    I. Tabas, Consequences of cellular cholesterol accumulation: basic concepts and physiological implications, J Clin Invest 110:905–11 (2002).PubMedGoogle Scholar
  93. 93.
    P. Yao, and I. Tabas, Free cholesterol loading of macrophages is associated with widespread mitochondrial dysfunction and activation of the mitochondrial apoptosis pathway, J Biol Chem 276:42468–42476 (2001).PubMedGoogle Scholar
  94. 94.
    M. Febbraio, D. Hajjar, and R. Silverstein, CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism., J Clin Invest 108:785–791 (2001).CrossRefPubMedGoogle Scholar
  95. 95.
    L. Nagy, P. Tontonoz, J. G. Alvarez, H. Chen, and R. M. Evans, Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma, Cell 93:229–40 (1998).CrossRefPubMedGoogle Scholar
  96. 96.
    P. Tontonoz, L. Nagy, J. G. Alvarez, V. A. Thomazy, and R. M. Evans, PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL, Cell 93:241–52 (1998).CrossRefPubMedGoogle Scholar
  97. 97.
    E. I. Waddington, K. D. Croft, K. Sienuarine, B. Latham, and I. B. Puddey, Fatty acid oxidation products in human atherosclerotic plaque: an analysis of clinical and histopathological correlates, Atherosclerosis 167:111–20 (2003).CrossRefPubMedGoogle Scholar
  98. 98.
    S. Panini, L. Yang, A. Rusinol, M. Sinensky, J. Bonventre, and C. Leslie, Arachidonate metabolism and the signaling pathway of induction of apoptosis by oxidized LDL/oxysterol, J Lipid Res 42:1678–1686 (2001).PubMedGoogle Scholar
  99. 99.
    A. Z. Zhao, M. M. Shinohara, D. Huang, et al., Leptin induces insulin-like signaling that antagonizes cAMP elevation by glucagon in hepatocytes, J Biol Chem 275:11348–54 (2000).PubMedGoogle Scholar
  100. 100.
    Z. Dagher, N. Ruderman, K. Tornheim, and Y. Ido, Acute regulation of fatty acid oxidation and AMP-activated protein kinase in human umbilical vein endothelial cells., Circ Res 88:1276–82 (2001).PubMedGoogle Scholar
  101. 101.
    S. Yamagishi, D. Edelstein, X. Du, Y. Kaneda, M. Guzman, and M. Brownlee, Leptin induces mitochondrial superoxide production and monocyte chemoattractant protein-1 expression in aortic endothelial cells by increasing fatty acid oxidation via protein kinase A, J Biol Chem 276:25096–25100 (2001).PubMedGoogle Scholar
  102. 102.
    A. Bouloumie, T. Marumo, M. Lafontan, and R. Busse, Leptin induces oxidative stress in human endothelial cells, Faseb J 13:1231–8 (1999).PubMedGoogle Scholar
  103. 103.
    G. Steinberg, A. Bonen, and D. Dyck, Fatty acid oxidation and triacylglycerol hydrolysis are enhanced after chronic leptin treatment in rats, AJP — Endocrinol Metab 282:E593–E600 (2002).Google Scholar
  104. 104.
    Y. Minokoshi, Y. Kim, O. Peroni, et al., Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase, Nature 415:339–343 (2002).CrossRefPubMedGoogle Scholar
  105. 105.
    L. L. Atkinson, M. A. Fischer, and G. D. Lopaschuk, Leptin activates cardiac fatty acid oxidation independent of changes in the AMP-activated protein kinase-acetyl-CoA carboxylase-malonyl-CoA axis, J Biol Chem 277:29424–30 (2002).CrossRefPubMedGoogle Scholar
  106. 106.
    S. W. Ballinger, C. Patterson, C. A. Knight-Lozano, et al., Mitochondrial integrity and function in atherogenesis, Circulation 106:544–9 (2002).CrossRefPubMedGoogle Scholar
  107. 107.
    G. Chinetti, S. Griglio, M. Antonucci, et al., Activation of proliferator-activated receptors alpha and gamma induces apoptosis of human monocyte-derived macropages., J Biol Chem 273:25573–25580 (1998).CrossRefPubMedGoogle Scholar
  108. 108.
    P. Delerive, B, De, K, S. Besnard, et al., Peroxisome proliferated-activated receptor alpha negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-kappaB and AP-1., J Biol Chem 274:32048–32054 (1999).CrossRefPubMedGoogle Scholar
  109. 109.
    N. Marx, G. Sukhova, T. Collins, P. Libby, and J. Plutzky, PPARalpha activators inhibit cytokine-induced vascular cell adhesion molecule-1 expression in human endothelial cells, Circulation 99:3125–3131 (1999).PubMedGoogle Scholar
  110. 110.
    I. Rusyn, C. Bradham, L. Cohn, et al., Corn oil rapidly activates nuclear factorkappaB in hepatic Kupffer cells by oxidant-dependent mechanisms, Carcinogenesis 20:2095–2100 (1999).CrossRefPubMedGoogle Scholar
  111. 111.
    R. De Caterina, J. Liao, and P. Libby, Fatty acid modulation of endothelial activation., Am J Clin Nutr 71:213S–23S (2000).PubMedGoogle Scholar
  112. 112.
    P. Delerive, C. Furman, E. Teissier, J.-C. Fruchart, P. Duriez, and B. Staels, Oxidized phosopholipids activate PPARa in a phospholipase A2-dependent manner., FEBS Letters 471:34–38 (2000A).CrossRefPubMedGoogle Scholar
  113. 113.
    B. Hennig, P. Meerarani, P. Ramadass, B. Watkins, and M. Toborek, Fatty acidmediated activation of vascular endothelial cells, Metab Clin Exper 49:1006–1013 (2000).Google Scholar
  114. 114.
    B. Neve, J.-C. Fruchart, and B. Staels, Role of the peroxisome proliferator-activated receptors (PPAR) in atherosclerosis, Biochem Pharmacol 60:1245–1250 (2000).CrossRefPubMedGoogle Scholar
  115. 115.
    C. Glass, Potential roles of the peroxisome proliferator-activated receptor-gamma in macrophage biology and atherosclerosis, J Endocrinol 169:461–464 (2001).CrossRefPubMedGoogle Scholar
  116. 116.
    W. Dichtl, M. Ares, A. Jonson, et al., Linoleic Linoleic acid-stimulated vascular adhesion molecule-1 expression in endothelial cells depends on nuclear factor-kappaB activation., Metabolism 51:327–333 (2002).CrossRefPubMedGoogle Scholar
  117. 117.
    P. Libby, P. Ridker, and A. Maseri, Inflammation and atherosclerosis, Circulation 105:1135–1143 (2002).PubMedGoogle Scholar
  118. 118.
    A. D. Pradhan, J. E. Manson, J. E. Rossouw, et al., Inflammatory biomarkers, hormone replacement therapy, and incident coronary heart disease: prospective analysis from the Women’s Health Initiative Observational Study, Jama 288:980–7 (2002).CrossRefPubMedGoogle Scholar
  119. 119.
    M. B. Pepys, and G. M. Hirschfield, C-reactive protein: a critical update, J Clin Invest 111:1805–12 (2003).CrossRefPubMedGoogle Scholar
  120. 120.
    S. Klebanoff, Myeloperoxidase, Proceedings of the Association of American Physicians 111:383–389 (1999).PubMedGoogle Scholar
  121. 121.
    E. Podrez, H. Abu-Soud, and S. Hazen, Myeloperoxidase-generated oxidants and atherosclerosis, Free Radical Biol Med 28:1717–1725 (2000).CrossRefGoogle Scholar
  122. 122.
    W. Li, F. Miller, Jr, H. Zhang, D. Spitz, L. Oberley, and N. Weintraub, H2O2-induced O2 production by a non-phagocytic NAD(P)H oxidase causes oxidant injury, J Biol Chem 276:29251–29256 (2001).PubMedGoogle Scholar
  123. 123.
    Z. Mallat, and A. Tedgui, Current perspective on the role of apoptosis in atherothrombotic disease, Circulation Res 88:998–1003 (2001).PubMedGoogle Scholar
  124. 124.
    R. R. Singaraja, C. Fievet, G. Castro, et al., Increased ABCA1 activity protects against atherosclerosis, J Clin Invest 110:35–42 (2002).CrossRefPubMedGoogle Scholar
  125. 125.
    Y. Wang, and J. Oram, Unsaturated fatty acids inhibit cholesterol efflux from macrophages by increasing degradation of ATP-binding cassette transporter A1, J Biol Chem 277:5692–5697 (2002).PubMedGoogle Scholar
  126. 126.
    A. R. Tall, P. Costet, and N. Wang, Regulation and mechanisms of macrophage cholesterol efflux, J Clin Invest 110:899–904 (2002).CrossRefPubMedGoogle Scholar
  127. 127.
    N. Wang, L. Verna, N. G. Chen, et al., Constitutive activation of peroxisome proliferator-activated receptor-gamma suppresses pro-inflammatory adhesion molecules in human vascular endothelial cells, J Biol Chem 277:34176–81 (2002).PubMedGoogle Scholar
  128. 128.
    C.-H. Lee, and R. Evans, Peroxisome proliferator-activated receptor-gamma in macrophage lipid homeostasis, Trends Endocrinol Metab 13:331–335 (2002).PubMedGoogle Scholar
  129. 129.
    M. Poynter, and R. Daynes, Peroxisome proliferator-activated receptor alpha activation modulates cellular redox status, represses nuclear factor-kappaB signaling, and reduces inflammatory cytokine production in aging, J Biol Chem 273:32833–32841 (1998).CrossRefPubMedGoogle Scholar
  130. 130.
    H. Duez, Y. S. Chao, M. Hernandez, et al., Reduction of atherosclerosis by the peroxisome proliferator-activated receptor alpha agonist fenofibrate in mice, J Biol Chem 277:48051–7 (2002).CrossRefPubMedGoogle Scholar
  131. 131.
    G. A. Francis, J. S. Annicotte, and J. Auwerx, PPAR-alpha effects on the heart and other vascular tissues, Am J Physiol Heart Circ Physiol 285:H1–9 (2003).PubMedGoogle Scholar
  132. 132.
    Y. Fu, N. Luo, M. F. Lopes-Virella, and W. T. Garvey, The adipocyte lipid binding protein (ALBP/aP2) gene facilitates foam cell formation in human THP-1 macrophages, Atherosclerosis 165:259–69 (2002).CrossRefPubMedGoogle Scholar
  133. 133.
    L. Makowski, J. Boord, K. Maeda, et al., Lack of macrophage fatty-acid-binding protein aP2 protects mice deficient in apolipoprotein E against atherosclerosis, Nature Med 7:699–705 (2001).PubMedGoogle Scholar
  134. 134.
    M. Perrella, A. Pellacani, M. Layne, et al., Absence of adipocyte fatty acid binding protein prevents the development of accelerated atherosclerosis in hypercholesterolemic mice, FASEB J 15:1774–1776 (2001).PubMedGoogle Scholar
  135. 135.
    J. B. Boord, K. Maeda, L. Makowski, et al., Adipocyte fatty acid-binding protein, aP2, alters late atherosclerotic lesion formation in severe hypercholesterolemia, Arterioscler Thromb Vasc Biol 22:1686–91 (2002).PubMedGoogle Scholar
  136. 136.
    I. Lemieux, A. Pascot, D. Prud’homme, et al., Elevated C-reactive protein: another component of the atherothrombotic profile of abdominal obesity, Arterioscler Thromb Vasc Biol 21:961–7 (2001).PubMedGoogle Scholar
  137. 137.
    L._A. Bazzano, J. He, P. Muntner, S. Vupputuri, and P. K. Whelton, Relationship between cigarette smoking and novel risk factors for cardiovascular disease in the United States, Ann Intern Med 138:891–7 (2003).PubMedGoogle Scholar
  138. 138.
    V. Pasceri, J. T. Willerson, and E. T. Yeh, Direct proinflammatory effect of Creactive protein on human endothelial cells, Circulation 102:2165–8 (2000).PubMedGoogle Scholar
  139. 139.
    E. Miles, F. Wallace, and P. Calder, Dietary fish oil reduces intercellular adhesion molecule 1 and scavenger receptor expression on murine macrophages, Athersclerosis 152:43–50 (2000).Google Scholar
  140. 140.
    O. Ziouzenkova, S. Perrey, L. Asatryan, et al., Lipolysis of triglyceride-rich lipoproteins generates PPAR ligands: evidence for an antiinflammatory role for lipoprotein lipase, Proc Natl Acad Sci U S A 100:2730–35 (2003).CrossRefPubMedGoogle Scholar
  141. 141.
    L. Vincent, C. Soria, F. Mirshahi, et al., Cerivastatin, an inhibitor of 3-hydroxy-3-methylglutaryl coenzyme a reductase, inhibits endothelial cell proliferation induced by angiogenic factors in vitro and angiogenesis in in vivo models, Arterioscler Thromb Vasc Biol 22:623–9 (2002).PubMedGoogle Scholar
  142. 142.
    C. B. Xu, E. Stenman, and L. Edvinsson, Reduction of bFGF-induced smooth muscle cell proliferation and endothelin receptor mRNA expression by mevastatin and atorvastatin, Biochem Pharmacol 64:497–505 (2002).CrossRefPubMedGoogle Scholar
  143. 143.
    S. Youssef, O. Stuve, J. C. Patarroyo, et al., The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease, Nature 420:78–84 (2002).CrossRefPubMedGoogle Scholar
  144. 144.
    C. Denoyelle, M. Vasse, M. Korner, et al., Cerivastatin, an inhibitor of HMG-CoA reductase, inhibits the signaling pathways involved in the invasiveness and metastatic properties of highly invasive breast cancer cell lines: an in vitro study, Carcinogenesis 22:1139–48 (2001).CrossRefPubMedGoogle Scholar
  145. 145.
    K. Pahan, F. G. Sheikh, A. M. Namboodiri, and I. Singh, Lovastatin and phenylacetate inhibit the induction of nitric oxide synthase and cytokines in rat primary astrocytes, microglia, and macrophages, J Clin Invest 100:2671–9 (1997).PubMedGoogle Scholar
  146. 146.
    I. Inoue, F. Itoh, S. Aoyagi, et al., Fibrate and statin synergistically increase the transcriptional activities of PPARalpha/RXRalpha and decrease the transactivation of NFkappaB, Biochem Biophys Res Commun 290:131–9 (2002).CrossRefPubMedGoogle Scholar
  147. 147.
    K. Fassbender, M. Simons, C. Bergmann, et al., Simvastatin strongly reduces levels of Alzheimer’s disease beta-amyloid peptides Abeta 42 and Abeta 40 in vitro and in vivo, Proc Natl Acad Sci U S A 98:5856–61 (2001).CrossRefPubMedGoogle Scholar
  148. 148.
    M. A. Albert, E. Danielson, N. Rifai, and P. M. Ridker, Effect of statin therapy on Creactive protein levels: the pravastatin inflammation/CRP evaluation (PRINCE): a randomized trial and cohort study, Jama 286:64–70 (2001).PubMedGoogle Scholar
  149. 149.
    R. A. DeBose-Boyd, J. Ou, J. L. Goldstein, and M. S. Brown, Expression of sterol regulatory element-binding protein 1c (SREBP-1c) mRNA in rat hepatoma cells requires endogenous LXR ligands, Proc Natl Acad Sci U S A 98:1477–82 (2001).CrossRefPubMedGoogle Scholar
  150. 150.
    Z. Sheng, H. Otani, M. S. Brown, and J. L. Goldstein, Independent regulation of sterol regulatory element-binding proteins 1 and 2 in hamster liver, Proc Natl Acad Sci U S A 92:935–8 (1995).PubMedGoogle Scholar
  151. 151.
    F. J. Field, E. Born, S. Murthy, and S. N. Mathur, Regulation of sterol regulatory element-binding proteins in hamster intestine by changes in cholesterol flux, J Biol Chem 276:17576–83 (2001).CrossRefPubMedGoogle Scholar
  152. 152.
    G. Martin, H. Duez, C. Blanquart, et al., Statin-induced inhibition of the Rhosignaling pathway activates PPARalpha and induces HDL apoA-I, J Clin Invest 107:1423–32 (2001).PubMedGoogle Scholar
  153. 153.
    J. D. Horton, I. Shimomura, M. S. Brown, R. E. Hammer, J. L. Goldstein, and H. Shimano, Activation of cholesterol synthesis in preference to fatty acid synthesis in liver and adipose tissue of transgenic mice overproducing sterol regulatory elementbinding protein-2, J Clin Invest 101:2331–9 (1998).PubMedGoogle Scholar
  154. 154.
    H. Scharnagl, R. Schinker, H. Gierens, M. Nauck, H. Wieland, and W. Marz, Effect of atorvastatin, simvastatin, and lovastatin on the metabolism of cholesterol and triacylglycerides in HepG2 cells, Biochem Pharmacol 62:1545–55 (2001).CrossRefPubMedGoogle Scholar
  155. 155.
    J. D. Horton, J. L. Goldstein, and M. S. Brown, SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver, J Clin Invest 109:1125–31 (2002).CrossRefPubMedGoogle Scholar
  156. 156.
    L. Fajas, K. Schoonjans, L. Gelman, et al., Regulation of peroxisome proliferatoractivated receptor gamma expression by adipocyte differentiation and determination factor 1/sterol regulatory element binding protein 1: implications for adipocyte differentiation and metabolism, Mol Cell Biol 19:5495–503 (1999).PubMedGoogle Scholar
  157. 157.
    C. Ukomadu, and A. Dutta, Inhibition of cdk2 activating phosphorylation by mevastatin, J Biol Chem 278:4840–46 (2003).PubMedGoogle Scholar
  158. 158.
    Y. A. Yang, P. J. Morin, W. F. Han, et al., Regulation of fatty acid synthase expression in breast cancer by sterol regulatory element binding protein-1c, Exp Cell Res 282:132–7 (2003).CrossRefPubMedGoogle Scholar
  159. 159.
    I. Jialal, D. Stein, D. Balis, S. M. Grundy, B. Adams-Huet, and S. Devaraj, Effect of hydroxymethyl glutaryl coenzyme a reductase inhibitor therapy on high sensitive Creactive protein levels, Circulation 103:1933–5 (2001).PubMedGoogle Scholar
  160. 160.
    U. Laufs, and J. K. Liao, Post-transcriptional regulation of endothelial nitric oxide synthase mRNA stability by Rho GTPase, J Biol Chem 273:24266–71 (1998).CrossRefPubMedGoogle Scholar
  161. 161.
    A. M. Lefer, R. Scalia, and D. J. Lefer, Vascular effects of HMG CoA-reductase inhibitors (statins) unrelated to cholesterol lowering: new concepts for cardiovascular disease, Cardiovasc Res 49:281–7 (2001).CrossRefPubMedGoogle Scholar
  162. 162.
    H. Harada, K. P. Pavlick, I. N. Hines, et al., Sexual dimorphism in reduced-size liver ischemia and reperfusion injury in mice: role of endothelial cell nitric oxide synthase, Proc Natl Acad Sci U S A 100:739–44 (2003).PubMedGoogle Scholar
  163. 163.
    J. Malik, V. Melenovsky, D. Wichterle, et al.. Both fenofibrate and atorvastatin improve vascular reactivity in combined hyperlipidaemia (fenofibrate versus atorvastatin trial-FAT), Cardiovasc Res 52:290–8 (2001).CrossRefPubMedGoogle Scholar
  164. 164.
    S. B. Joseph, E. McKilligin, L. Pei, et al., Synthetic LXR ligand inhibits the development of atherosclerosis in mice, Proc Natl Acad Sci U S A 99:7604–9 (2002B).PubMedGoogle Scholar
  165. 165.
    S. Wassmann, U. Laufs, K. Muller, et al., Cellular antioxidant effects of atorvastatin in vitro and in vivo, Arterioscler Thromb Vasc Biol 22:300–5 (2002).PubMedGoogle Scholar
  166. 166.
    T. J. Aitman, A. M. Glazier, C. A. Wallace, et al., Identification of Cd36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats, Nat Genet 21:76–83 (1999).CrossRefPubMedGoogle Scholar
  167. 167.
    N. Qi, L. Kazdova, V. Zidek, et al., Pharmacogenetic evidence that Cd36 is a key determinant of the metabolic effects of pioglitazone, J Biol Chem 277:48501–7 (2002).PubMedGoogle Scholar
  168. 168.
    B. M. Egan, E. L. Greene, and T. L. Goodfriend, Nonesterified fatty acids in blood pressure control and cardiovascular complications, Curr Hypertens Rep 3:107–16 (2001).PubMedGoogle Scholar
  169. 169.
    T. Ichiki, K. Takeda, T. Tokunou, et al., Downregulation of angiotensin II type 1 receptor by hydrophobic 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors in vascular smooth muscle cells, Arterioscler Thromb Vasc Biol 21:1896–901 (2001).PubMedGoogle Scholar
  170. 170.
    H. Masuzaki, H. Yamamoto, C. J. Kenyon, et al., Transgenic amplification of glucocorticoid action in adipose tissue causes high blood pressure in mice, J Clin Invest 112:83–90 (2003).CrossRefPubMedGoogle Scholar
  171. 171.
    Y. Zhou, P. Grayburn, A. Karim, et al., Lipotoxic heart disease in obese rats: implications for human obesity, Proc Natl Acad Sci USA 97:1784–1789 (2000).PubMedGoogle Scholar
  172. 172.
    G. M. Corbi, S. Carbone, P. Ziccardi, et al., FFAs and QT intervals in obese women with visceral adiposity: effects of sustained weight loss over 1 year, J Clin Endocrinol Metab 87:2080–3 (2002).CrossRefPubMedGoogle Scholar
  173. 173.
    J. R. Dyck, and G. D. Lopaschuk, Malonyl CoA control of fatty acid oxidation in the ischemic heart, J Mol Cell Cardiol 34:1099–109 (2002).CrossRefPubMedGoogle Scholar
  174. 174.
    B. Finck, J. Lehman, T. Leone, et al., The cardiac phenotype induced by PPARalpha overexpression mimics that caused by diabetes mellitus., J Clin Invest 109:121–130 (2002).CrossRefPubMedGoogle Scholar
  175. 175.
    T. Ramanathan, K. Shirota, S. Morita, et al., Left ventricular oxygen utilization efficiency is impaired in chronic streptozotocin-diabetic sheep, Cardiovasc Res 55:749–56 (2002).CrossRefPubMedGoogle Scholar
  176. 176.
    S. Boudina, P. Mazumder, R. Cooksey, D. McClain, and E. Abel, Mitochondrial impairment contributes to cardiac dysfunction in obese leptin-deficient (ob/ob) mice, Circulation 108:IV–16 (Abstract) (2003).Google Scholar
  177. 177.
    M. Higa, Y. Zhou, M. Ravazzola, D. Baetens, L. Orci, and R. Unger, Troglitazone prevents mitochondrial alterations, beta cell destruction, and diabetes in obese prediabetic rats, Proc Natl Acad Sci USA 96:11513–11518 (1999).CrossRefPubMedGoogle Scholar
  178. 178.
    S. Piro, M. Anello, C. Di Pietro, et al., Chronic exposure to free fatty acids or high glucose induces apoptosis in rat pancreatic islets: possible role of oxidative stress, Metabolism 51:1340–7 (2002).CrossRefPubMedGoogle Scholar
  179. 179.
    K. Sakai, K. Matsumoto, T. Nishikawa, et al., Mitochondrial reactive oxygen species reduce insulin secretion by pancreatic beta-cells, Biochem Biophys Res Commun 300:216–22 (2003).CrossRefPubMedGoogle Scholar
  180. 180.
    P. Oliveira, A. Rolo, V. Sardã, P. Coxito, C. Palmeira, and A. Moreno, Carvedilol in heart mitochondria protonophore or opener of the mitochondrial KATP channels?, Life Sci 69:123–132 (2001).CrossRefPubMedGoogle Scholar
  181. 181.
    L. X. Li, F. Skorpen, K. Egeberg, I. H. Jorgensen, and V. Grill, Induction of uncoupling protein 2 mRNA in beta-cells is stimulated by oxidation of fatty acids but not by nutrient oversupply, Endocrinology 143:1371–7 (2002).PubMedGoogle Scholar
  182. 182.
    J. C. Yoon, G. Xu, J. T. Deeney, et al., Suppression of beta cell energy metabolism and insulin release by PGC-1alpha, Dev Cell 5:73–83 (2003).CrossRefPubMedGoogle Scholar
  183. 183.
    M. Lehtihet, N. Welsh, P. O. Berggren, G. A. Cook, and A. Sjoholm, Glibenclamide inhibits islet carnitine palmitoyltransferase 1 activity, leading to PKC-dependent insulin exocytosis, Am J Physiol Endocrinol Metab 285:E438–46 (2003).PubMedGoogle Scholar
  184. 184.
    C. E. Wrede, L. M. Dickson, M. K. Lingohr, I. Briaud, and C. J. Rhodes, Protein kinase B/Akt prevents fatty acid-induced apoptosis in pancreatic beta-cells (INS-1), J Biol Chem 277:49676–84 (2002).CrossRefPubMedGoogle Scholar
  185. 185.
    Y. A. Yang, W. F. Han, P. J. Morin, F. J. Chrest, and E. S. Pizer, Activation of fatty acid synthesis during neoplastic transformation: role of mitogen-activated protein kinase and phosphatidylinositol 3-kinase, Exp Cell Res 279:80–90 (2002).CrossRefPubMedGoogle Scholar
  186. 186.
    M. Ristow, H. Mulder, D. Pomplun, et al., Frataxin deficiency in pancreatic islets causes diabetes due to loss of beta cell mass, J Clin Invest 112:527–34 (2003).CrossRefPubMedGoogle Scholar
  187. 187.
    J. E. Schaffer, Lipotoxicity: when tissues overeat, Curr Opin Lipidol 14:281–7 (2003).CrossRefPubMedGoogle Scholar
  188. 188.
    R. H. Unger, and L. Orci, Lipoapoptosis: its mechanism and its diseases, Biochim Biophys Acta 1585:202–12 (2002).PubMedGoogle Scholar
  189. 189.
    W. El-Assad, J. Buteau, M.-L. Peyot, et al., Saturated fatty acids synergize with elevated glucose to cause pancreatic beta-cell death., Endocrinology 144:4154–4163 (2003).Google Scholar
  190. 190.
    R. Branstrom, I. B. Leibiger, B. Leibiger, B. E. Corkey, P. O. Berggren, and O. Larsson, Long chain coenzyme A esters activate the pore-forming subunit (Kir6. 2) of the ATP-regulated potassium channel, J Biol Chem 273:31395–400 (1998).PubMedGoogle Scholar
  191. 191.
    I. Leclercq, G. Farrell, J. Field, D. Bell, F. Gonzalez, and G. Robertson, CYP2E1 and CYP4A as microsomal catalysts of lipid peroxides in murine nonalcoholic steatohepatitis, J Clin Invest 105:1067–1075 (2000).PubMedGoogle Scholar
  192. 192.
    A. Sanyal, C. Campbell-Sargent, F. Mirshahi, et al., Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities, Gastroenterol 120:1281–1285 (2001).Google Scholar
  193. 193.
    B. A. Neuschwander-Tetri, and S. H. Caldwell, Nonalcoholic steatohepatitis: summary of an AASLD Single Topic Conference, Hepatology 37:1202–19 (2003).CrossRefPubMedGoogle Scholar
  194. 194.
    C. L. Limoli, E. Giedzinski, W. F. Morgan, S. G. Swarts, G. D. Jones, and W. Hyun, Persistent oxidative stress in chromosomally unstable cells, Cancer Res 63:3107–11 (2003).PubMedGoogle Scholar
  195. 195.
    M. M. Hassan, L. Y. Hwang, C. J. Hatten, et al., Risk factors for hepatocellular carcinoma: synergism of alcohol with viral hepatitis and diabetes mellitus, Hepatology 36:1206–13 (2002).CrossRefPubMedGoogle Scholar
  196. 196.
    J. A. Marrero, R. J. Fontana, G. L. Su, H. S. Conjeevaram, D. M. Emick, and A. S. Lok, NAFLD may be a common underlying liver disease in patients with hepatocellular carcinoma in the United States, Hepatology 36:1349–54 (2002).CrossRefPubMedGoogle Scholar
  197. 197.
    E. E. Calle, C. Rodriguez, K. Walker-Thurmond, and M. J. Thun, Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults, N Engl J Med 348:1625–38 (2003).CrossRefPubMedGoogle Scholar
  198. 198.
    K. West, J. Borgnard, A. Clark, et al., Rapid Akt activation by nicotine and a tobacco carcinogen modulates the phenotype of normal human airway epithelial cells, J Clin Invest 111:81–90 (2003).CrossRefPubMedGoogle Scholar
  199. 199.
    G. D. Lopaschuk, Alterations in fatty acid oxidation during reperfusion of the heart after myocardial ischemia, Am J Cardiol 80:11A–16A (1997).PubMedGoogle Scholar
  200. 200.
    T. Vanden Hoek, L. Becker, Z. Shao, C. Li, and P. Schumacker, Reactive oxygen species released from mitochondria during brief hypoxia induce preconditioning in cardiomyocytes, J Biol Chem 273:18092–18098 (1998).Google Scholar
  201. 201.
    Y. Yue, M. Krenz, M. Cohen, J. Downey, and S. Critz, Menadione mimics the infarct-limiting effect of preconditioning in isolated rat hearts, Am J Physiol Heart Circ Physiol 281:H590–595 (2001).PubMedGoogle Scholar
  202. 202.
    H. Jaeschke, Molecular mechanisms of hepatic ischemia-reperfusion injury and preconditioning, Am J Physiol Gastrointest Liver Physiol 284:G15–26 (2003).PubMedGoogle Scholar
  203. 203.
    G. Lebuffe, P. T. Schumacker, Z. H. Shao, T. Anderson, H. Iwase, and T. L. Vanden Hoek, ROS and NO trigger early preconditioning: relationship to mitochondrial KATP channel, Am J Physiol Heart Circ Physiol 284:H299–308 (2003).PubMedGoogle Scholar
  204. 204.
    P. Kantor, A. Lucien, R. Kozak, and G. Lopaschuk, The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase, Circ Res 86:580–588 (2000).PubMedGoogle Scholar
  205. 205.
    D. Portilla, G. Dai, J. Peters, F. Gonzalez, M. Crew, and A. Proia, Etomoxir-induced PPARa-modulated enzymes protect during acute renal failure, Am J Physiol Renal Physiol 278:F667–F675 (2000).PubMedGoogle Scholar
  206. 206.
    R. Cornelussen, G. Van Der Vusse, T. Roemen, and L. Snoeckx, Heat pretreatment differentially affects cardiac fatty acid accumulation during ischemia and postischemic reperfusion., Am J Physiol Heart Circ Physiol 280:H1736–H1743 (2001).PubMedGoogle Scholar
  207. 207.
    M. Taniguchi, C. Wilson, C. Hunter, D. Pehowich, A. Clanachan, and G. Lopaschuk, Dichloroacetate improves cardiac efficiency after ischemia independent of changes in mitochondrial proton leak, Am J Physiol Heart Circ Physiol 280:H1762–H1769 (2001).PubMedGoogle Scholar
  208. 208.
    I. Xavier, P. Mercier, C. McLoughlin, A. Ali, J. Woodgett, and N. Ovsenek, Glycogen synthase kinase 3b negatively regulates both DNA-binding and transcriptional activities of heat shock factor 1, J Biol Chem 275:29147–29152 (2000).CrossRefPubMedGoogle Scholar
  209. 209.
    N. Collier, M. Sheetz, and M. Schlesinger, Concomitant changes in mitochondria and intermediate filaments during heat shock and recovery of chicken embryo fibroblasts., J Cellular Biochem 52:297–307 (1993).Google Scholar
  210. 210.
    K. Djabali, N. De, B, F. Lon, and M. Portier, AlphaB-crystallin interacts with intermediate filaments in response to stress., J Cell Sci 110:2759–2769 (1997).PubMedGoogle Scholar
  211. 211.
    I. Izawa, M. Nishizawa, K. Ohtakara, K. Ohtsuka, H. Inada, and M. Inagaki, Identification of Mrj, a DnaJ/Hsp40 family protein, as a keratin 8/18 filament regulatory protein, J Biol Chem 275:34521–7 (2000).CrossRefPubMedGoogle Scholar
  212. 212.
    G. Velasco, D. Gómez, Pulgar, T, D. Carlin, and M. Guzmán, Evidence that the AMPactivated protein kinase stimulates rat liver carnitine palmitoyltransferase I by phosphorylating cytoskeletal components, FEBS Lett 439:317–320 (1998A).CrossRefPubMedGoogle Scholar
  213. 213.
    G. Velasco, M. Geelen, T. Gomez del Pulgar, and M. Guzmán, Malonyl-CoAindependent acute control of hepatic carnitine palmitoyltransferase I activity: Role of Ca2+/calmodulin-dependent protein kinase II and cytoskeletal components, J Biol Chem 273:21497–21504 (1998B).CrossRefPubMedGoogle Scholar
  214. 214.
    S. I. Han, S. Y. Oh, W. J. Jeon, et al., Mild heat shock induces cyclin D1 synthesis through multiple Ras signal pathways, FEBS Lett 515:141–5 (2002).CrossRefPubMedGoogle Scholar
  215. 215.
    K. Takuma, K. Mori, E. Lee, R. Enomoto, A. Baba, and T. Matsuda, Heat shock inhibits hydrogen peroxide-induced apoptosis in cultured astrocytes, Brain Res 946:232–8 (2002).CrossRefPubMedGoogle Scholar
  216. 216.
    F. Lee, Y. Li, H. Zhu, et al., Tumor necrosis factor increases mitochondrial oxidant production and induces expression of uncoupling protein-2 in the regenerating mouse liver, Hepatology 29:677–687 (1999).CrossRefPubMedGoogle Scholar
  217. 217.
    K. M. Mearow, M. E. Dodge, M. Rahimtula, and C. Yegappan, Stress-mediated signaling in PC12 cells — the role of the small heat shock protein, Hsp27, and Akt in protecting cells from heat stress and nerve growth factor withdrawal, J Neurochem 83:452–62 (2002).CrossRefPubMedGoogle Scholar
  218. 218.
    S. Sato, N. Fujita, and T. Tsuruo, Modulation of Akt kinase activity by binding to Hsp90, Proc Natl Acad Sci USA 97:10832–10837 (2000).PubMedGoogle Scholar
  219. 219.
    A. D. Basso, D. B. Solit, G. Chiosis, B. Giri, P. Tsichlis, and N. Rosen, Akt forms an intracellular complex with heat shock protein 90 (Hsp90) and Cdc37 and is destabilized by inhibitors of Hsp90 function, J Biol Chem 277:39858–66 (2002).CrossRefPubMedGoogle Scholar
  220. 220.
    D. Arsenijevic, H. Onuma, C. Pecqueur, et al., Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production, Nat Genet 26:435–9 (2000).PubMedGoogle Scholar
  221. 221.
    K. J. Mukamal, K. M. Conigrave, M. A. Mittleman, et al., Roles of drinking pattern and type of alcohol consumed in coronary heart disease in men, N Engl J Med 348:109–18 (2003A).CrossRefPubMedGoogle Scholar
  222. 222.
    A. Ruitenberg, J. C. van Swieten, J. C. Witteman, et al., Alcohol consumption and risk of dementia: the Rotterdam Study, Lancet 359:281–6 (2002).CrossRefPubMedGoogle Scholar
  223. 223.
    K. J. Mukamal, L. H. Kuller, A. L. Fitzpatrick, W. T. Longstreth, Jr., M. A. Mittleman, and D. S. Siscovick, Prospective study of alcohol consumption and risk of dementia in older adults, Jama 289:1405–13 (2003B).CrossRefPubMedGoogle Scholar
  224. 224.
    J. B. Hoek, A. Cahill, and J. G. Pastorino, Alcohol and mitochondria: a dysfunctional relationship, Gastroenterology 122:2049–63 (2002).CrossRefPubMedGoogle Scholar
  225. 225.
    M. M. da Silva, A. Sartori, E. Belisle, and A. J. Kowaltowski, Ischemic preconditioning inhibits mitochondrial respiration, increases H2O2 release, and enhances K+ transport, Am J Physiol Heart Circ Physiol 285:H154–62 (2003).PubMedGoogle Scholar
  226. 226.
    D. M. Valks, T. J. Kemp, and A. Clerk, Regulation of Bcl-xL expression by H2O2 in cardiac myocytes, J Biol Chem 278:25542–7 (2003).CrossRefPubMedGoogle Scholar
  227. 227.
    Y. Yaguchi, H. Satoh, N. Wakahara, et al., Protective effects of hydrogen peroxide against ischemia/reperfusion injury in perfused rat hearts, Circ J 67:253–8 (2003).CrossRefPubMedGoogle Scholar
  228. 228.
    K. R. Valeur, and R. degli Agosti, Simulations of temperature sensitivity of the peroxidase-oxidase oscillator, Biophys Chem 99:259–70 (2002).CrossRefPubMedGoogle Scholar
  229. 229.
    M. Sakoh, and A. Gjedde, Neuroprotection in hypothermia linked to redistribution of oxygen in brain, Am J Physiol Heart Circ Physiol 285:H17–25 (2003).PubMedGoogle Scholar
  230. 230.
    H. Z. Zhou, J. S. Karliner, and M. O. Gray, Moderate alcohol consumption induces sustained cardiac protection by activating PKC-epsilon and Akt, Am J Physiol Heart Circ Physiol 283:H165–74 (2002).PubMedGoogle Scholar
  231. 231.
    N. Teoh, A. Dela Pena, and G. Farrell, Hepatic ischemic preconditioning in mice is associated with activation of NF-kappaB, p38 kinase, and cell cycle entry, Hepatology 36:94–102 (2002).CrossRefPubMedGoogle Scholar
  232. 232.
    L. He, and J. J. Lemasters, Heat shock suppresses the permeability transition in rat liver mitochondria, J Biol Chem 278:16755–60 (2003).PubMedGoogle Scholar
  233. 233.
    C. Diez-Fernandez, D. Andres, and M. Cascales, Attenuating effects of heat shock against TGF-betal-induced apoptosis in cultured rat hepatocytes, Free Radic Biol Med 33:835–46 (2002).PubMedGoogle Scholar
  234. 234.
    R. Ockner, N. Lysenko, N. Wu, and N. Bass, Hepatocyte growth inhibitors modulate mitochondrial and extramitochondrial fatty acid oxidation, Hepatology 24:253A (Abstract) (1996).Google Scholar
  235. 235.
    J. Dypbukt, M. Ankarcrona, M. Burkitt, et al., Different prooxidant levels stimulate growth, trigger apoptosis, or produce necrosis of insulin-secreting RINm5F cells: The role of intracellular polyamines., J Biol Chem 269:30553–30560 (1994).PubMedGoogle Scholar
  236. 236.
    M. Benhar, D. Engelberg, and A. Levitzki, ROS, stress-activated kinases and stress signaling in cancer, EMBO Rep 3:420–5 (2002).CrossRefPubMedGoogle Scholar
  237. 237.
    C. Sen, and L. Packer, Antioxidant and redox regulation of gene transcription, FASEB J 10:709–720 (1996).PubMedGoogle Scholar
  238. 238.
    V. Lakshminarayanan, E. Drab-Weiss, and K. Roebuck, H2O2 and tumor necrosis factor-alpha induce differential binding of the redox-responsive transcription factors AP-1 and NF-kappaB to the interleukin-8 promoter in endothelial and epithelial cells, J Biol Chem 273:32670–32678 (1998).CrossRefPubMedGoogle Scholar
  239. 239.
    E. Shaulian, and M. Karin, AP-1 as a regulator of cell life and death, Nat Cell Biol 4:E131–6 (2002).CrossRefPubMedGoogle Scholar
  240. 240.
    S. Lee, K. Kwon, S. Kim, and S. Rhee, Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor, J Biol Chem 273:15366–15372 (1998).PubMedGoogle Scholar
  241. 241.
    W. Barrett, J. DeGnore, Y. Keng, Z. Zhang, M. Yim, and P. Chock, Roles of superoxide radical anion in signal transduction mediated by reversible regulation of protein-tyrosine phosphatase IB., J Biol Chem 274:34543–34546 (1999).CrossRefPubMedGoogle Scholar
  242. 242.
    N. Chandel, D. McClintock, C. Feliciano, et al., Reactive oxygfen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing., J Biol Chem 275:25130–25138 (2000).CrossRefPubMedGoogle Scholar
  243. 243.
    C. Schroedl, D. S. McClintock, G. R. Budinger, and N. S. Chandel, Hypoxic but not anoxic stabilization of HIF-1alpha requires mitochondrial reactive oxygen species, Am J Physiol Lung Cell Mol Physiol 283:L922–31 (2002).PubMedGoogle Scholar
  244. 244.
    G. Semenza, HIF-1 and tumor progression: pathophysiology and therapeutics., Trends Molec Med 8:S62–S67 (2002).Google Scholar
  245. 245.
    P. Garcia-Nogales, A. Almeida, and J. Bolañs, Peroxynitrite protects neurons against nitric oxide-mediated apoptosis. A key role for glucose-6-phosphate dehydrogenase activity in neuroprotection., J Biol Chem 278:864–874 (2003).CrossRefPubMedGoogle Scholar
  246. 246.
    V. Nilakantan, B. Spear, and H. Glauert, Liver-specific catalase expression in transgenic mice inhibits NF-kappaB activation and DNA synthesis induced by the peroxisome proliferator ciprofibrate, Carcinogenesis 19:631–637 (1998).CrossRefPubMedGoogle Scholar
  247. 247.
    T. Finkel, Redox-dependent signal transduction., FEBS Letters 476:52–54 (2000A).CrossRefPubMedGoogle Scholar
  248. 248.
    V. Thannickal, R. Day, S. Klinz, M. Bastien, J. Larios, and B. Fanburg, Rasdependent and-independent regulation of reactive oxygen species by mitogenic growth factors and TGF-b1, FASEB J 14:1741–1748 (2000).CrossRefPubMedGoogle Scholar
  249. 249.
    S. Nemoto, and T. Finkel, Redox regulation of forkhead proteins through a p66shcdependent signaling pathway, Science 295:2450–2452 (2002).CrossRefPubMedGoogle Scholar
  250. 250.
    K. F. Petersen, D. Befroy, S. Dufour, et al., Mitochondrial dysfunction in the elderly: possible role in insulin resistance, Science 300:1140–2 (2003).CrossRefPubMedGoogle Scholar
  251. 251.
    A. L. Hsu, C. T. Murphy, and C. Kenyon, Regulation of aging and age-related disease by DAF-16 and heat-shock factor, Science 300:1142–5 (2003).CrossRefPubMedGoogle Scholar
  252. 252.
    S. S. Korshunov, V. P. Skulachev, and A. A. Starkov, High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria, FEBS Lett 416:15–8 (1997).CrossRefPubMedGoogle Scholar
  253. 253.
    S.-S. Liu, Cooperation of a “reactive oxygen cycle” with the Q cycle and the proton cycle in the respiratory chain—superoxide generating and cycling mechanisms in mitochondria, J Bioenerg Biomembr 31:367–376 (1999).PubMedGoogle Scholar
  254. 254.
    I. Lee, E. Bender, and B. Kadenbach, Control of mitochondrial membrane potential and ROS formation by reversible phosphorylation of cytochrome c oxidase, Mol Cell Biochem 234–235:63–70 (2002).PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2004

Personalised recommendations