Nutrient and Energy Metabolism in Cell Proliferation


Hepatocyte Growth Factor Oxidative Phosphorylation Electron Transport Chain Fatty Acid Oxidation Adenomatous Polyposis Coli 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

3.4. References

  1. 1.
    P. J. Randle, Regulatory interactions between lipids and carbohydrates: the glucose fatty acid cycle after 35 years, Diabetes Metab Rev 14:263–83 (1998).CrossRefPubMedGoogle Scholar
  2. 2.
    G. Boden, and G. I. Shulman, Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and beta-cell dysfunction, Eur J Clin Invest 32Suppl 3:14–23 (2002).PubMedGoogle Scholar
  3. 3.
    J. McGarry, Banting lecture, 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes, Diabetes 51:7–18 (2002).PubMedGoogle Scholar
  4. 4.
    T. A. Hopkins, M. C. Sugden, M. J. Holness, R. Kozak, J. R. Dyck, and G. D. Lopaschuk, Control of cardiac pyruvate dehydrogenase activity in peroxisome proliferator-activated receptor-alpha transgenic mice, Am J Physiol Heart Circ Physiol 285:H270–6 (2003).PubMedGoogle Scholar
  5. 5.
    J. Scaife, and H. Brohee, An investigation of factors influencing mitotic G2 delay in synchronous cultures of human kidney cells and X-irradiation, Can J Biochem 47:237–249 (1969).PubMedGoogle Scholar
  6. 6.
    S. Ishiguro, H. Yamaguchi, Y. Oka, and H. Miyamoto, Change in energy metabolism in the cell cycle of mouse L cells, Cell Structure Function 3:331–340 (1978).Google Scholar
  7. 7.
    S. Skog, B. Tribukait, and G. Sundius, Energy metabolism and ATP turnover time during the cell cycle of Ehrlich ascites tumour cells, Exp Cell Res 141:23–29 (1982).CrossRefPubMedGoogle Scholar
  8. 8.
    S. Skog, B. Tribukait, and G. Sundius, Energy metabolism and ATP turnover time during the cell cycle in roentgen irradiated Ehrlich ascites tumour cells, Acta Radiol Oncol 22:369–379 (1983).PubMedGoogle Scholar
  9. 9.
    C. Van den Bogert, P. Muus, C. Haanen, A. Pennings, T. Melis, and A. Kroon, Mitochondrial biogenesis and mitochondrial activity during the progression of the cell cycle of human leukemic cells, Exp Cell Res 178:143–153 (1988).PubMedGoogle Scholar
  10. 10.
    L. Xie, and D. Wang, Energy metabolism and ATP balance in animal cell cultivation using a stoichiometrically based reaction network, Biotech Bioengineering 521:591–601 (1996).Google Scholar
  11. 11.
    S. Talha, and L. Harel, Early stimulation of ATP turnover induced by growth factors: Synergistic effect of EGF and insulin and correlation with DNA synthesis, Exp Cell Res 158:311–320 (1985).CrossRefPubMedGoogle Scholar
  12. 12.
    V. Jain, I. Gupta, and K. Lata, Energetics of cellular repair processes in a respiratorydeficient mutant of yeast, Rad Res 92:463–473 (1982).Google Scholar
  13. 13.
    Y. Li, G. Sattler, and H. Pitot, Oxaloacetate induces DNA synthesis and mitosis in primary cultured rat hepatocytes in the absence of EGF, Biochem Biophys Res Commun 193:1339–1346 (1993).CrossRefPubMedGoogle Scholar
  14. 14.
    S. Linke, K. Clarkin, L. Di, A. Tsou, and G. Wahl, A reversible, p53-dependent G0/G1 cell cycle arrest induced by ribonucleotide depletion in the absence of detectable DNA damage, Genes Devel 10:934–947 (1996).PubMedGoogle Scholar
  15. 15.
    T. Gaal, M. Bartlett, W. Ross, C. Turnbough, Jr, and R. Gourse, Transcription regulation by intiating NTP concentration: rRNA synthesis in bacteria., Science 278:2092–2097 (1997).CrossRefPubMedGoogle Scholar
  16. 16.
    D. Jones, Intracellular diffusion gradients of O2 and ATP, Am J Physiol 250:C663–C675 (1986).PubMedGoogle Scholar
  17. 17.
    E. Fontaine, C. Keriel, S. Lantuejoul, M. Rigoulet, X. Leverve, and V. Saks, Cytoplasmic cellular structures control permeability of outer mitochondrial membrane for ADP and oxidative phosphorylation in rat liver cells., Biochem Biophys Res Commun 213:138–146 (1995).CrossRefPubMedGoogle Scholar
  18. 18.
    E. Takahashi, H. Endoh, and K. Doi, Intracellular gradients of O2 supply to mitochondria in actively respiring single cardiomyocyte of rats, Am J Physiol 276:H718–724 (1999).PubMedGoogle Scholar
  19. 19.
    O. Warburg. Uber den stoffwechsel den tumoren: Arbeiten aus dem Kaiser Wilhelm-Institut fur biologie, ed., J Springer, Berlin (1926), pp. 115–149.Google Scholar
  20. 20.
    P. Pedersen, Tumor mitochondria and the bioenergetics of cancer cells, Prog Exp Tumor Res 22:190–274 (1978).PubMedGoogle Scholar
  21. 21.
    F. Kallinowski, K. Schlenger, M. Kloes, M. Stohrer, and P. Vaupel, Tumor blood flow: the principal modulator of oxidative and glycolytic metabolism, and of the metabolic micromilieu of human tumor xenografts in vivo, Intl J Cancer 44: 266–272 (1989).Google Scholar
  22. 22.
    S. Mazurek, C. Boschek, and E. Eigenbrodt, The role of phosphometabolites in cell proliferation, energy metabolism, and tumor therapy, J Bioenerg Biomembranes 29:315–330 (1997).Google Scholar
  23. 23.
    P. L. Pedersen, S. Mathupala, A. Rempel, J. F. Geschwind, and Y. H. Ko, Mitochondrial bound type II hexokinase: a key player in the growth and survival of many cancers and an ideal prospect for therapeutic intervention, Biochim Biophys Acta 1555:14–20 (2002).PubMedGoogle Scholar
  24. 24.
    P. Bannasch, Pathogenesis of hepatocellular carcinoma: sequential cellular, molecular, and metabolic changes., Prog Liver Dis 14:161–197 (1996).PubMedGoogle Scholar
  25. 25.
    M. Younes, L. Lechago, J. Somoano, M. Mosharaf, and J. Lechago, Wide expression of the human erythrocyte glucose transporter Glut1 in human cancers, Cancer Res 56:1164–1167 (1996).PubMedGoogle Scholar
  26. 26.
    J. Flier, M. Mueckler, P. Usher, and H. Lodish, Elevated levels of glucose transport and transporter messenger RNA are induced by ras or src oncogenes., Science 235:1492–1495 (1987).PubMedGoogle Scholar
  27. 27.
    M. Birnbaum, H. Haspel, and O. Rosen, Transformation of rat fibroblasts by FSV rapidly increases glucose transporter gene transcription., Science 235:1495–1498 (1987).PubMedGoogle Scholar
  28. 28.
    E. Riu, F. Bosch, and A. Valera, Prevention of diabetic alterations in transgenic mice overexpressing Myc in the liver, Proc Natl Acad Sci USA 93:2198–2202 (1996).CrossRefPubMedGoogle Scholar
  29. 29.
    M. Tiedge, and S. Lenzen, Effects of sodium butyrate on glucose transporter and glucosephosphorylating enzyme gene expression in RINm5F insulinoma cells, J Molec Endocrinol 17:19–26 (1996).Google Scholar
  30. 30.
    B. Gelb, V. Adams, S. Jones, L. Griffin, G. Macgregor, and E. Mccabe, Targeting of hexokinase 1 to liver and hepatoma mitochondria., Proc Natl Acad Sci USA 89:202–206 (1992).PubMedGoogle Scholar
  31. 31.
    S. Mathupala, A. Rempel, and P. Pedersen, Glucose catabolism in cancer cells: identification and characterization of a marked activation response of the type II hexokinase gene to hypoxic conditions, J Biol Chem 276:43407–43412 (2001).CrossRefPubMedGoogle Scholar
  32. 32.
    A. Goel, S. P. Mathupala, and P. L. Pedersen, Glucose metabolism in cancer. Evidence that demethylation events play a role in activating type II hexokinase gene expression, J Biol Chem 278:15333–40 (2003).PubMedGoogle Scholar
  33. 33.
    G. Beutner, A. Rück, B. Riede, and D. Brdiczka, Complexes between porin, hexokinase, mitochondrial creatine kinase and adenylate translocator display properties of the permeability transition pore: Implication for regulation of permeability transition by the kinases., Biochim Biophys Acta 1368:7–18 (1998).PubMedGoogle Scholar
  34. 34.
    N. Zamzami, C. Brenner, I. Marzo, S. Susin, and G. Kroemer, Subcellular and submitochondrial mode of action of Bcl-2-like oncoproteins, Oncogene 16:2265–2282 (1998).PubMedGoogle Scholar
  35. 35.
    I. Marzo, C. Brenner, N. Zamzami, et al., The permeability transition pore complex: a target for apoptosis regulation by caspases and bcl-2-related proteins, J Exper Med 187:1261–1271 (1998).CrossRefGoogle Scholar
  36. 36.
    V. Lemeshko, Model of the outer membrane potential generation by the inner membrane of mitochondria, Biophys J 82:684–692 (2002).PubMedGoogle Scholar
  37. 37.
    J. Pastorino, N. Shulga, and J. Hoek, Mitochondrial binding of hexokinase II inhibits Baxinduced cytochrome c release and apoptosis, J Biol Chem 277:7610–7618 (2002).CrossRefPubMedGoogle Scholar
  38. 38.
    M. Y. Vyssokikh, and D. Brdiczka, The function of complexes between the outer mitochondrial membrane pore (VDAC) and the adenine nucleotide translocase in regulation of energy metabolism and apoptosis, Acta Biochim Pol 50:389–404 (2003).PubMedGoogle Scholar
  39. 39.
    E. McCabe, Microcompartmentation of energy metabolism at the outer mitochondrial membrane: role in diabetes mellitus and other diseases, J Bioenerg Biomembranes 26:317–325 (1994).Google Scholar
  40. 40.
    M. Fanciulli, M. Paggi, T. Bruno, et al., Glycolysis and growth rate in normal and in hexokinase-transfected NIH-3T3 cells., Oncol Res 6:405–409 (1994).PubMedGoogle Scholar
  41. 41.
    M. Board, A. Colquhoun, and E. Newsholme, High Km glucose-phosphorylating (glucokinase) activities in a range of tumor cell lines and inhibition of rates of tumor growth by the specific enzyme inhibitor mannoheptulose., Cancer Res 55:3278–3285 (1995).PubMedGoogle Scholar
  42. 42.
    D. Mayer, F. Klimek, A. Rempel, and P. Bannasch, Hexokinase expression in liver preneoplasia and neoplasia (Review), Biochem Soc Trans 25:122–127 (1997).PubMedGoogle Scholar
  43. 43.
    Y. Shinohara, T. Ishida, M. Hino, N. Yamazaki, Y. Baba, and H. Terada, Characterization of porin isoforms expressed in tumor cells, Eur J Biochem 267:6067–6073 (2000).CrossRefPubMedGoogle Scholar
  44. 44.
    R. Ockner, Apoptosis and liver diseases: Recent concepts of mechanisms and significance, J Gastroenterol Hepatol 16:248–260 (2001).CrossRefPubMedGoogle Scholar
  45. 45.
    L. Hue, and G. Rousseau, Fructose 2,6-bisphosphate and the control of glycolysis by growth factors, tumor promoters and oncogenes, Adv Enzyme Regul 33:97–110 (1993).PubMedGoogle Scholar
  46. 46.
    M. Joaquin, J. Rosa, C. Salvado, et al., Hepatocyte growth factor and transforming growth factor beta regulate 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene expression in rat hepatocyte primary cultures, Biochem J 314:235–240 (1996).PubMedGoogle Scholar
  47. 47.
    G. Thoresen, and T. Christoffersen, Transforming growth factor beta 1 increases the phosphoenolpyruvate carboxykinase mRNA level in cultured rat hepatocytes, Cell Biol Intl 18:171–175 (1994).Google Scholar
  48. 48.
    K. Sasaki, T. Cripe, S. Koch, et al., Multihormonal regulation of phosphoenolpyruvate carboxykinase gene transcription: The dominant role of insulin, J Biol Chem 259:15242–15251 (1984).PubMedGoogle Scholar
  49. 49.
    C. Fillat, A. Valera, and F. Bosch, Epidermal growth factor inhibits phosphoenolpyruvate carboxykinase gene expression in rat hepatocytes in primary culture., FEBS Lett. 318: 287–291 (1993).CrossRefPubMedGoogle Scholar
  50. 50.
    D. Persons, N. Schek, B. Hall, and O. Finn, Increased expression of glycolysis-associated genes in oncogene-transformed and growth-accelerated states, Mol Carcinog 2:88–94 (1989).PubMedGoogle Scholar
  51. 51.
    O. Kaplan, J. Jaroszewski, P. Faustino, et al., Toxicity and effects of epidermal growth factor on glucose metabolism of MDA-468 human breast cancer cells, J Biol Chem 265:13641–13649 (1990).PubMedGoogle Scholar
  52. 52.
    K. Yamada, and T. Noguchi, Regulation of pyruvate kinase M gene expression, Biochem Biophys Res Commun 256:257–262 (1999).PubMedGoogle Scholar
  53. 53.
    P. Bannasch, F. Klimek, and D. Mayer, Early bioenergetic changes in hepatocarcinogenesis: preneoplastic phenotypes mimic responses to insulin and thyroid hormone., J Bioenergetics Biomembranes 29:303–313 (1997).Google Scholar
  54. 54.
    D. Nehrbass, F. Klimek, and P. Bannasch, Overexpression of insulin receptor substrate-1 emerges early in hepatocarcinogenesis and elicits preneoplastic hepatic glycogenosis, Am J Pathol 152:341–345 (1998).PubMedGoogle Scholar
  55. 55.
    W. Tian, L. Braunstein, J. Pang, et al., Importance of glucose-6-phosphate dehydrogenase activity for cell growth, J Biol Chem 273:10609–10617 (1998).PubMedGoogle Scholar
  56. 56.
    S. Soboll, Regulation of energy metabolism in liver, J Bioenergetics Biomembranes 27:571–582 (1995).Google Scholar
  57. 57.
    S. Sweet, and G. Singh, Accumulation of human promyelocytic leukemic (HL-60) cells at two energetic cell cycle checkpoints, Cancer Res 55:5164–5167 (1995).PubMedGoogle Scholar
  58. 58.
    L. Sauer, and R. Dauchy, Ketone body, glucose, lactic acid, and amino acid utilization by tumors in vivo in fasted rats, Cancer Res 43:3497–3503 (1983).PubMedGoogle Scholar
  59. 59.
    J. Boren, M. Cascante, S. Marin, et al., Gleevec (STI571) influences metabolic enzyme activities and glucose carbon flow toward nucleic acid and fatty acid synthesis in myeloid tumor cells., J Biol Chem 276:37747–37753 (2001).PubMedGoogle Scholar
  60. 60.
    S. Miccadei, M. Fanciulli, T. Bruno, M. Paggi, and A. Floridi, Energy metabolism of adriamycin-sensitive and-resistant Ehrlich ascites tumor cells, Oncol Res 8:27–35 (1996).PubMedGoogle Scholar
  61. 61.
    R. Nakashima, M. Paggi, and P. Pedersen, Contributions of glycolysis and oxidative phosphorylation to adenosine 5’-triphosphate production in AS-30D hepatoma cells, Cancer Res 44:5702–5706 (1984).PubMedGoogle Scholar
  62. 61.
    V. Goossens, J. Grooten, and W. Fiers, The oxidative metabolism of glutamine: A modulator of reactive oxygen intermediate-mediated cytotoxicity of tumor necrosis factor in L929 fibrosarcoma cells, J Biol Chem 271:192–196 (1996).PubMedGoogle Scholar
  63. 63.
    Z. Kovacevic, and J. Mcgivan, Mitochondrial metabolism of glutamine and glutamate and its physiological significance, Physiol Rev 63:547–605 (1983).PubMedGoogle Scholar
  64. 64.
    M. Board, S. Humm, and E. Newsholme, Maximum activities of key enzymes of glycolysis, glutaminolysis, pentose phosphate pathway and tricarboxylic acid cycle in normal, neoplastic and suppressed cells., Biochem J 265:503–509 (1990).PubMedGoogle Scholar
  65. 65.
    L. Chen, Mitochondrial membrane potential in living cells., Annu Rev Cell Biol 4:155–181 (1988).CrossRefPubMedGoogle Scholar
  66. 66.
    P. Maxwell, G. Dachs, J. Gleadle, et al., Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth, Proc Natl Acad Sci USA 94:8104–8109 (1997).CrossRefPubMedGoogle Scholar
  67. 67.
    N. Chandel, D. McClintock, C. Feliciano, et al., Reactive oxygfen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1 alpha during hypoxia: a mechanism of O2 sensing., J Biol Chem 275:25130–25138 (2000).CrossRefPubMedGoogle Scholar
  68. 68.
    O. Genbacev, Y. Zhou, J. Ludlow, and S. Fisher, Regulation of human placental development by oxygen tension., Science 277:1669–1672 (1997).CrossRefPubMedGoogle Scholar
  69. 69.
    E. Greiner, M. Guppy, and K. Brand, Glucose is essential for proliferation and the glycolytic enzyme induction that provokes a transition to glycolytic energy production, J Biol Chem 269:31484–31490 (1994).PubMedGoogle Scholar
  70. 70.
    G. Semenza, HIF-1 and tumor progression: pathophysiology and therapeutics., Trends Molec Med 8:S62–S67 (2002).Google Scholar
  71. 71.
    N. Goda, H. Ryan, B. Khadivi, W. McNulty, R. Rickert, and R. Johnson, Hypoxiainducible factor 1a is essential for cell cycle arrest during hypoxia, Molec Cell Biol 23:359–369 (2003).PubMedGoogle Scholar
  72. 72.
    Z. Z. Chong, J. Q. Kang, and K. Maiese, Erythropoietin is a novel vascular protectant through activation of Akt1 and mitochondrial modulation of cysteine proteases, Circulation 106:2973–9 (2002).CrossRefPubMedGoogle Scholar
  73. 73.
    T. Graeber, C. Osmanian, T. Jacks, et al., Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours, Nature 379:88–91 (1996).CrossRefPubMedGoogle Scholar
  74. 74.
    I. Sussman, M. Erecinska, and D. F. Wilson, Regulation of cellular energy metabolism: the Crabtree effect, Biochim Biophys Acta 591:209–23 (1980).PubMedGoogle Scholar
  75. 75.
    L. Wojtczak, V. Teplova, K. Bogucka, et al., Effect of glucose and deoxyglucose on the redistribution of calcium in ehrlich ascites tumour and Zajdela hepatoma cells and its consequences for mitochondrial energetics: Further arguments for the role of Ca(2+) in the mechanism of the crabtree effect, Eur J Biochem 263:495–501 (1999B).CrossRefPubMedGoogle Scholar
  76. 76.
    S. Rodriguez-Enriquez, O. Juarez, J. Rodriguez-Zavala, and R. Moreno-Sanchez, Multisite control of the Crabtree effect in ascites hepatoma cells, Eur J Biochem 268:2512–2519 (2001).CrossRefPubMedGoogle Scholar
  77. 77.
    M. Peifer, Beta-catenin as oncogene: the smoking gun, Science 275:1752–1753 (1997).CrossRefPubMedGoogle Scholar
  78. 78.
    M. Hart, R. De Los Santos, I. Albert, B. Rubinfeld, and P. Polakis, Downregulation of beta-catenin by human Axin and its association with the APC tumor suppressor, betacatenin and GSK3 beta, Current Biol 8:573–581 (1998).Google Scholar
  79. 79.
    F. McCormick, Signalling networks that cause cancer, Trends Biochem Sci 24:M53–M56 (1999).CrossRefGoogle Scholar
  80. 80.
    D. Plas, S. Talapatra, A. Edinger, J. Rathmell, and C. Thompson, Akt and Bcl-xL promote growth factor-independent survival through distinct effects on mitochondrial physiology, J Biol Chem 276:12041–12048 (2001).CrossRefPubMedGoogle Scholar
  81. 81.
    L. Cantley, and B. Neel, New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway., Proc Natl Acad Sci USA 96:4240–4245 (1999).CrossRefPubMedGoogle Scholar
  82. 82.
    M. M. Hill, and B. A. Hemmings, Inhibition of protein kinase B/Akt. implications for cancer therapy, Pharmacol Ther 93:243–51 (2002).CrossRefPubMedGoogle Scholar
  83. 83.
    B. Vanhaesebroeck, and D. Alessi, The PI3K-PDK1 connection: more than just a road to PKB, Biochem J 346:561–576 (2000).CrossRefPubMedGoogle Scholar
  84. 84.
    R. Tuttle, N. Gill, W. Pugh, et al., Regulation of pancreatic beta-cell growth and survival by the serine/threonine protein kinase Akt1/PKBalpha, Nat Med 7:1133–1137 (2001).CrossRefPubMedGoogle Scholar
  85. 85.
    K. A. Longo, J. A. Kennell, M. J. Ochocinska, S. E. Ross, W. S. Wright, and O. A. MacDougald, Wnt signaling protects 3T3-L1 preadipocytes from apoptosis through induction of insulin-like growth factors, J Biol Chem 277:38239–44 (2002).CrossRefPubMedGoogle Scholar
  86. 86.
    K. Gottlob, N. Majewski, S. Kennedy, E. Kandel, R. Robey, and N. Hay, Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase, Genes Devel 15:1406–1418 (2001).PubMedGoogle Scholar
  87. 87.
    A. Ahmad, S. Ahmad, B. K. Schneider, C. B. Allen, L. Y. Chang, and C. W. White, Elevated expression of hexokinase II protects human lung epithelial-like AS49 cells against oxidative injury, Am J Physiol Lung Cell Mol Physiol 283:L573–84 (2002).PubMedGoogle Scholar
  88. 88.
    T. Burdon, A. Smith, and P. Savatier, Signalling, cell cycle and pluripotency in embryonic stem cells, Trends Cell Biol 12:432–8 (2002).CrossRefPubMedGoogle Scholar
  89. 89.
    T. Reya, A. W. Duncan, L. Ailles, et al., A role for Wnt signalling in self-renewal of haematopoietic stem cells, Nature 423:409–14 (2003).CrossRefPubMedGoogle Scholar
  90. 90.
    S. Datta, H. Dudek, X. Tao, et al., Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery., Cell 91:231–241 (1997).CrossRefPubMedGoogle Scholar
  91. 91.
    M. Cardone, N. Roy, H. Stennicke, et al., Regulation of cell death protease caspase-9 by phosphorylation., Science 282:1318–1321 (1998).CrossRefPubMedGoogle Scholar
  92. 92.
    O. Ozes, L. Mayo, J. Gustin, S. Pfeffer, L. Pfeffer, and D. Donner, NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase, Nature 401:82–85 (1999).PubMedGoogle Scholar
  93. 93.
    R. G. Jones, A. R. Elford, M. J. Parsons, et al., CD28-dependent activation of protein kinase B/Akt blocks Fas-mediated apoptosis by preventing death-inducing signaling complex assembly, J Exp Med 196:335–48 (2002).CrossRefPubMedGoogle Scholar
  94. 94.
    D. McClintock, M. Santore, V. Lee, et al., Bcl-2 family members and functional electron transport chain regulate oxygen deprivation-induced cell death, Mol Cell Biol 22:94–104 (2002).CrossRefPubMedGoogle Scholar
  95. 95.
    A. Brunet, A. Bonni, M. Zigmond, et al., Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor., Cell 96:857–868 (1999).CrossRefPubMedGoogle Scholar
  96. 96.
    E. Shtivelman, J. Sussman, and D. Stokoe, A role for PI 3-kinase and PKB activity in the G2/M phase of the cell cycle, Curr Biol 12:919–24 (2002).CrossRefPubMedGoogle Scholar
  97. 97.
    R. Medema, G. Kops, J. Bos, and B. Burgering, AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1, Nature 404:782–788 (2000).PubMedGoogle Scholar
  98. 98.
    H. Tran, A. Brunet, J. Grenier, et al., DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein, Science 296:530–534 (2002).CrossRefPubMedGoogle Scholar
  99. 99.
    Y. Honda, and S. Honda, The daf-2 gene network for longevity regulates oxidative stress resistance and Mn-superoxide dismutase gene expression in Caenorhabditis elegans, FASEB J 13:1385–1393 (1999).PubMedGoogle Scholar
  100. 100.
    S. Ghaffari, Z. Jagani, C. Kitidis, H. F. Lodish, and R. Khosravi-Far, Cytokines and BCR-ABL mediate suppression of TRAIL-induced apoptosis through inhibition of forkhead FOXO3a transcription factor, Proc Natl Acad Sci U S A 100:6523–8 (2003).CrossRefPubMedGoogle Scholar
  101. 101.
    B. Gumbiner, Carcinogenesis: a balance between beta-catenin and APC, Current Biol 7:R443–R446 (1997).Google Scholar
  102. 102.
    A. Yap, W, Brieher, and B. Gumbiner, Molecular and functional analysis ofcadherinbased adherens junctions, Ann Rev Cell Dev Biol 13:119–146 (1997).Google Scholar
  103. 103.
    M. Hoshi, A. Takashima, K. Noguchi, et al., Regulation of mitochondrial pyruvate dehydrogenase activity by tau protein kinase I/glycogen synthase kinase 3beta in brain, Proc Natl Acad Sci USA 93:2719–2723 (1996).CrossRefPubMedGoogle Scholar
  104. 104.
    J. Diehl, M. Cheng, M. Roussel, and C. Sherr, Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization., Genes Devel 12:3499–3511 (1998).PubMedGoogle Scholar
  105. 105.
    O. Tetsu, and F. Mccormick, Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells, Nature 398:422–426 (1999).PubMedGoogle Scholar
  106. 106.
    H. C. Crawford, B. M. Fingleton, L. A. Rudolph-Owen, et al., The metalloproteinase matrilysin is a target of beta-catenin transactivation in intestinal tumors, Oncogene 18:2883–91 (1999).CrossRefPubMedGoogle Scholar
  107. 107.
    T. He, A. Sparks, C. Rago, et al., Identification of c-MYC as a target of the APC pathway, Science 281:1509–1512 (1998).CrossRefPubMedGoogle Scholar
  108. 108.
    G. Christofori, and H. Semb, The role of the cell-adhesion molecule E-cadherin as a tumour-suppressor gene., Trends Biochem Sci 24:73–76 (1999).CrossRefPubMedGoogle Scholar
  109. 109.
    H. Hermeking, C. Rago, M. Schuhmacher, et al., Identification of CDK4 as a target of c-MYC, Proc Natl Acad Sci USA 97:2229–2234 (2000).CrossRefPubMedGoogle Scholar
  110. 110.
    D. R. Wonsey, K. I. Zeller, and C. V. Dang, The c-Myc target gene PRDX3 is required for mitochondrial homeostasis and neoplastic transformation, Proc Natl Acad Sci U S A 99:6649–54 (2002).CrossRefPubMedGoogle Scholar
  111. 111.
    P. Staller, K. Peukert, A. Kiermaier, et al., Repression of p15INK4b expression by Myc through association with Miz-1, Nature Cell Biol 3:392–399 (2001).CrossRefPubMedGoogle Scholar
  112. 112.
    I. Perez-Roger, S. Kim, B. Griffiths, A. Sewing, and H. Land, Cyclins D1 and D2 mediate Myc-induced proliferation via sequestration of p27(Kip1) and p21(Cip1), EMBO J 18:5310–5320 (1999).CrossRefPubMedGoogle Scholar
  113. 113.
    C. Sherr, and J. Roberts, CDK inhibitors: positive and negative regulators of Gl-phase progression, Genes Dev 13:1501–12 (1999).PubMedGoogle Scholar
  114. 114.
    O. Coqueret, New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment?, Trends Cell Biol 13:65–70 (2003).CrossRefPubMedGoogle Scholar
  115. 115.
    L. Rossig, C. Badorff, Y. Holzmann, A. M. Zeiher, and S. Dimmeler, Glycogen synthase kinase-3 couples AKT-dependent signaling to the regulation of p21Cip1 degradation, J Biol Chem 277:9684–9 (2002).CrossRefPubMedGoogle Scholar
  116. 116.
    Y. Li, D. Dowbenko, and L. A. Lasky, AKT/PKB phosphorylation of p21Cip/WAF1 enhances protein stability of p21Cip/WAF1 and promotes cell survival, J Biol Chem 277:11352–61 (2002).PubMedGoogle Scholar
  117. 117.
    B. Zhou, Y. Liao, W. Xia, B. Spohn, M. Lee, and M. Hung, Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells, Nat Cell Biol 3:245–252 (2001).PubMedGoogle Scholar
  118. 118.
    I. Shin, F. M. Yakes, F. Rojo, et al., PKB/Akt mediates cell-cycle progression by phosphorylation of p27(Kip1) at threonine 157 and modulation of its cellular localization, Nat Med 8:1145–52 (2002).CrossRefPubMedGoogle Scholar
  119. 119.
    J. Liang, J. Zubovitz, T. Petrocelli, et al., PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest, Nat Med 8:1153–60 (2002).CrossRefPubMedGoogle Scholar
  120. 120.
    A. Kohn, S. Summers, M. Birnbaum, and R. Roth, Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation, J Biol Chem 271:31372–31378 (1996).PubMedGoogle Scholar
  121. 121.
    J. Deprez, D. Vertommen, D. Alessi, L. Hue, and M. Rider, Phosphorylation and activation of heart 6-phosphofructo-2-kinase by protein kinase B and other protein kinases of the insulin signaling cascades., J Biol Chem 272:17269–17275 (1997).CrossRefPubMedGoogle Scholar
  122. 122.
    D. Corcos, S. Vaulont, N. Denis, et al., Expression of c-myc is under dietary control in rat liver, Oncogene Res 1:193–199 (1987).PubMedGoogle Scholar
  123. 123.
    J. W. Kim, J. E. Lee, M. J. Kim, E. G. Cho, S. G. Cho, and E. J. Choi, Glycogen synthase kinase 3 beta is a natural activator of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase kinase 1 (MEKK1), J Biol Chem 278:13995–14001 (2003).PubMedGoogle Scholar
  124. 124.
    K. Hoeflich, J. Luo, E. Rubie, M. Tsao, O. Jin, and J. Woodgett, Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation, Nature 406:86–90 (2000).CrossRefPubMedGoogle Scholar
  125. 125.
    R. F. Schwabe, and D. A. Brenner, Role of glycogen synthase kinase-3 in TNF-alphainduced NF-kappaB activation and apoptosis in hepatocytes, Am J Physiol Gastrointest Liver Physiol 283:G204–11 (2002).PubMedGoogle Scholar
  126. 126.
    C. Sutherland, I. Leighton, and P. Cohen, Inactivation of glycogen synthase kinase-3 beta by phosphorylation: new kinase connections in insulin and growth-factor signalling, Biochem J 296:15–19 (1993).PubMedGoogle Scholar
  127. 127.
    H. Eldar-Finkelman, and E. Krebs, Phosphorylation of insulin receptor substrate 1 by glycogen synthase kinase 3 impairs insulin action., Proc Natl Acad Sci USA 94:9660–9664 (1997).CrossRefPubMedGoogle Scholar
  128. 128.
    P. Shepherd, D. Withers, and K. Siddle, Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling, Biochem J 333:471–490 (1998).PubMedGoogle Scholar
  129. 129.
    D. Decraene, P. Agostinis, R. Bouillon, H. Degreef, and M. Garmyn, Insulin-like growth factor-1-mediated AKT activation postpones the onset of ultraviolet B-induced apoptosis, providing more time for cyclobutane thymine dimer removal in primary human keratinocytes, J Biol Chem 277:32587–95 (2002).CrossRefPubMedGoogle Scholar
  130. 130.
    D. Taupin, K. Kinoshita, and D. Podolsky, Intestinal trefoil factor confers colonic epithelial resistance to apoptosis, Proc Natl Acad Sci USA 97:799–804 (2000).CrossRefPubMedGoogle Scholar
  131. 131.
    G. Skouteris, and E. Georgakopoulos, Hepatocyte growth factor-induced proliferation of primary hepatocytes is mediated by activation of phosphatidylinositol 3-kinase, Biochem Biophys Res Commun 218:229–233 (1996).CrossRefPubMedGoogle Scholar
  132. 132.
    J. Papkoff, and M. Aikawa, WNT-1 and HGF regulate GSK3-beta activity and betacatenin signaling in mammary epithelial cells, Biochem Biophys Res Comm 247:851–858 (1998).CrossRefPubMedGoogle Scholar
  133. 133.
    S. Andjelic, C. Hsia, H. Suzuki, T. Kadowaki, S. Koyasu, and H.-C. Liou, Phosphatidylinositol 3-kinase and NF-kB/Rel are at the divergence of CD40-mediated proliferation and survival pathways., J Immunol 165: 3860–3867 (2000).PubMedGoogle Scholar
  134. 134.
    K. Willert, J. D. Brown, E. Danenberg, et al., Wnt proteins are lipid-modified and can act as stem cell growth factors, Nature 423:448–52 (2003).CrossRefPubMedGoogle Scholar
  135. 135.
    M. Delcommenne, C. Tan, V. Gray, L. Rue, J. Woodgett, and S. Dedhar, Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/AKT by the integrin-linked kinase., Proc Natl Acad Sci USA 95:11211–11216 (1998).CrossRefPubMedGoogle Scholar
  136. 136.
    D. Cook, M. Fry, K. Hughes, R. Sumathipala, J. Woodgett, and T. Dale, Wingless inactivates glycogen synthase kinase-3 via an intracellular signalling pathway which involves a protein kinase C., Embo J 15:4526–4536 (1996).PubMedGoogle Scholar
  137. 137.
    E. Dempsey, A. Newton, D. Mochly-Rosen, et al., Protein kinase C isozymes and the regulation of diverse cell responses., Am J Physiol Lung Cell Mol Physiol 279:L429–L438 (2000).PubMedGoogle Scholar
  138. 138.
    N. Murray, L. Davidson, R. Chapkin, W. Gustafson, D. Shattenberg, and A. Fields, Overexpression of protein kinase C betaII induces colonic hyperproliferation and increased sensitivity to colon carcinogenesis, J Cell Biol 145:699–711 (1999).CrossRefPubMedGoogle Scholar
  139. 139.
    X. Chen, N. Iqbal, and G. Boden, The effects of free fatty acids on gluconeogenesis and glycogenolysis in normal subjects., J Clin Invest 103:365–372 (1999).PubMedGoogle Scholar
  140. 140.
    A. Dresner, D. Laurent, M. Marcucci, et al., Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity., J Clin Invest 103:253–259 (1999).PubMedGoogle Scholar
  141. 141.
    M. E. Griffin, M. J. Marcucci, G. W. Cline, et al., Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade, Diabetes 48:1270–4 (1999).PubMedGoogle Scholar
  142. 142.
    K. Cusi, K. Maezono, A. Osman, et al., Insulin resistance differentially affects the PI 3-kinase-and MAP kinase-mediated signaling in human muscle., J Clin Invest 105:311–320 (2000).PubMedGoogle Scholar
  143. 143.
    H. Steinberg, G. Paradisi, G. Hook, K. Crowder, J. Cronin, and A. Baron, Free fatty acid elevation impairs insulin-mediated vasodilation and nitric oxide production, Diabetes 49:1231–1238(2000).PubMedGoogle Scholar
  144. 144.
    P. Arner, Insulin resistance in type 2 diabetes: role of fatty acids, Diabetes Metab Res Rev 18Suppl 2:S5–9 (2002).PubMedGoogle Scholar
  145. 145.
    Y. Kruszynska, D. Worrall, J. Ofrecio, J. Frias, G. Macaraeg, and J. Olefsky, Fatty acid-induced insulin resistance: decreased muscle PI3K activation but unchanged Akt phosphorylation, J Clin Endocrinol Metab 87:226–234 (2002).CrossRefPubMedGoogle Scholar
  146. 146.
    T. K. Lam, H. Yoshii, C. A. Haber, et al., Free fatty acid-induced hepatic insulin resistance: a potential role for protein kinase C-delta, Am J Physiol Endocrinol Metab 283:E682–91 (2002).PubMedGoogle Scholar
  147. 147.
    C. L. Soltys, L. Buchholz, M. Gandhi, A. S. Clanachan, K. Walsh, and J. R. Dyck, Phosphorylation of cardiac protein kinase B is regulated by palmitate, Am J Physiol Heart Circ Physiol 283:H1056–64 (2002).PubMedGoogle Scholar
  148. 148.
    C. Yu, Y. Chen, G. W. Cline, et al., Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle, J Biol Chem 277:50230–50236 (2002).PubMedGoogle Scholar
  149. 149.
    Z. Jiang, Y. Lin, A. Clemont, et al., Characterization of selective resistance to insulin signaling in the vasculature of obese Zucker (fa/fa) rats, J Clin Invest 104:447–457 (1999).PubMedGoogle Scholar
  150. 150.
    S. Kim, K. Jee, D. Kim, H. Koh, and J. Chung, Cyclic AMP inhibits Akt activity by blocking the membrane localization of PDK1, J Biol Chem 276:12864–70 (2001).PubMedGoogle Scholar
  151. 151.
    Z. Xu, D. Stokoe, L. P. Kane, and A. Weiss, The inducible expression of the tumor suppressor gene PTEN promotes apoptosis and decreases cell size by inhibiting the PI3K/Akt pathway in Jurkat T cells, Cell Growth Differ 13:285–96 (2002).PubMedGoogle Scholar
  152. 152.
    A. Takashima, M. Murayama, O. Murayama, et al., Presenilin 1 associates with glycogen synthase kinase-3beta and its substrate tau, Proc Natl Acad Sci USA 95:9637–9641 (1998).CrossRefPubMedGoogle Scholar
  153. 153.
    M. Murayama, S. Tanaka, J. Palacino, et al., Direct association of presenilin-1 with betacatenin, FEBS Letters 433:73–77 (1998).CrossRefPubMedGoogle Scholar
  154. 154.
    F. Kirschenbaum, S.-C. Hsu, B. Cordell, and J. McCarthy, Substitution of a glycogen synthase kinase-3b phosphorylation site in presenilin 1 separates presenilin function from b-catenin signaling, J Biol Chem 276:7266–7375 (2001).Google Scholar
  155. 155.
    M. Packard, D. Mathew, and V. Budnik, Wnts and TGF beta in synaptogenesis: old friends signalling at new places, Nat Rev Neurosci 4:113–20 (2003).CrossRefPubMedGoogle Scholar
  156. 156.
    C. Bossenmeyer-Pourie, R. Kannan, S. Ribieras, et al., The trefoil factor 1 participates in gastrointestinal cell differentiation by delaying G1-S phase transition and reducing apoptosis, J Cell Biol 157:761–70 (2002).CrossRefPubMedGoogle Scholar
  157. 157.
    P. Klein, and D. Melton, A molecular mechanism for the effect of lithium on development, Proc Natl Acad Sci USA 93:8455–8459 (1996).PubMedGoogle Scholar
  158. 158.
    V. Stambolic, L. Ruel, and J. Woodgett, Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells, Curr Biol 6:1664–1668 (1996).CrossRefPubMedGoogle Scholar
  159. 159.
    E. Chalecka-Franaszek, and D. Chuang, Lithium activates the serine/threonine kinase Akt-1 and suppresses glutamate-induced inhibition of Akt-1 activity in neurons., Proc Natl Acad Sci USA 96:8745–8750 (1999).CrossRefPubMedGoogle Scholar
  160. 160.
    S. Summers, A. Kao, A. Kohn, et al., The role of glycogen synthase kinase 3beta in insulin-stimulated glucose metabolism, J Biol Chem 274:17934–17940 (1999).PubMedGoogle Scholar
  161. 161.
    S. Nonaka, C. Hough, and D. Chuang, Chronic lithium treatment robustly protects neurons in the central nervous system against excitotoxicity by inhibiting N-methyl-D-aspartate receptor-mediated calcium influx, Proc Natl Acad Sci USA 95: 2642–2647 (1998).CrossRefPubMedGoogle Scholar
  162. 162.
    H. Wei, P. Leeds, Y. Qian, W. Wei, R.-W. Chen, and D.-M. Chuang, Beta-amyloid peptide-induced death of PC 12 cells and cerebellar granule cell neurons is inhibited by long-term lithium treatment, Eur J Pharmacol 392:117–123 (2000).CrossRefPubMedGoogle Scholar
  163. 163.
    F. Staal, B. Burgering, M. van de Wetering, and H. Clevers, Tcf-1-mediated transcription in T lymphocytes: differential role for glycogen synthase kinase-3 in fibroblasts and T cells, Intl Immunol 11:317–323 (1999).Google Scholar
  164. 164.
    K. Ptashne, F. Stockdale, and S. Conlon, Initiation of DNA synthesis in mammary epithelium and mammary tumors by lithium ions, J Cellular Physiol 103:41–6 (1980).Google Scholar
  165. 165.
    H. Cui, Y. Meng, and R. Bulleit, Inhibition of glycogen synthase kinase 3beta activity regulates proliferation of cultured cerebellar granule cells., Brain Research Devel Brain Res 111:177–188 (1998).Google Scholar
  166. 166.
    T. Finkel, Redox-dependent signal transduction., FEBS Letters 476:52–54 (2000A).CrossRefPubMedGoogle Scholar
  167. 167.
    V. Thannickal, R. Day, S. Klinz, M. Bastien, J. Larios, and B. Fanburg, Ras-dependent and-independent regulation of reactive oxygen species by mitogenic growth factors and TGF-b1, FASEB J 14:1741–1748 (2000).CrossRefPubMedGoogle Scholar
  168. 168.
    S. Nemoto, and T. Finkel, Redox regulation of forkhead proteins through a p66shcdependent signaling pathway, Science 295:2450–2452 (2002).CrossRefPubMedGoogle Scholar
  169. 169.
    S. Lee, K. Kwon, S. Kim, and S. Rhee, Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor, J Biol Chem 273:15366–15372(1998).PubMedGoogle Scholar
  170. 170.
    W. Barrett, J. DeGnore, Y. Keng, Z. Zhang, M. Yim, and P. Chock, Roles of superoxide radical anion in signal transduction mediated by reversible regulation of protein-tyrosine phosphatase 1B., J Biol Chem 274:34543–34546 (1999).CrossRefPubMedGoogle Scholar
  171. 171.
    Y. Bae, J. Sung, O. Kim, et al., Platelet-derived growth factor-induced H2O2 production requires the activation of phosphatidylinositol 3-kinase., J Biol Chem 275:10527–10531 (2000).PubMedGoogle Scholar
  172. 172.
    S. Qin, E. Stadtman, and P. Chock, Regulation of oxidative stress-induced calcium release by phosphatidylinositol 3-kinase and Bruton’s tyrosine kinase in B cells, Proc Natl Acad Sci USA 97:7118–7123 (2000).CrossRefPubMedGoogle Scholar
  173. 173.
    J. Ding, T. Takano, S. Gao, et al., Syk is required for the activation of Akt survival pathway in B cells exposed to oxidative stress., J Biol Chem 275:30873–30877 (2000).PubMedGoogle Scholar
  174. 174.
    K. M. Mearow, M. E. Dodge, M. Rahimtula, and C. Yegappan, Stress-mediated signaling in PC12 cells — the role of the small heat shock protein, Hsp27, and Akt in protecting cells from heat stress and nerve growth factor withdrawal, J Neurochem 83:452–62 (2002).CrossRefPubMedGoogle Scholar
  175. 175.
    S. Sato, N. Fujita, and T. Tsuruo, Modulation of Akt kinase activity by binding to Hsp90, Proc Natl Acad Sci USA 97:10832–10837 (2000).PubMedGoogle Scholar
  176. 176.
    A. D. Basso, D. B. Solit, G. Chiosis, B. Giri, P. Tsichlis, and N. Rosen, Akt forms an intracellular complex with heat shock protein 90 (Hsp90) and Cdc37 and is destabilized by inhibitors of Hsp90 function, J Biol Chem 277:39858–66 (2002).CrossRefPubMedGoogle Scholar
  177. 177.
    C. Schroedl, D. S. McClintock, G. R. Budinger, and N. S. Chandel, Hypoxic but not anoxic stabilization of HIF-1 alpha requires mitochondrial reactive oxygen species, Am J Physiol Lung Cell Mol Physiol 283:L922–31 (2002).PubMedGoogle Scholar
  178. 178.
    C. Sen, and L. Packer, Antioxidant and redox regulation of gene transcription, FASEB J 10:709–720 (1996).PubMedGoogle Scholar
  179. 179.
    V. Lakshminarayanan, E. Drab-Weiss, and K. Roebuck, H2O2 and tumor necrosis factor-alpha induce differential binding of the redox-responsive transcription factors AP-1 and NF-kappaB to the interleukin-8 promoter in endothelial and epithelial cells, J Biol Chem 273:32670–32678 (1998).CrossRefPubMedGoogle Scholar
  180. 180.
    E. Shaulian, and M. Karin, AP-1 as a regulator of cell life and death, Nat Cell Biol 4:E131–6 (2002).CrossRefPubMedGoogle Scholar
  181. 181.
    E. Zelzer, Y. Levy, C. Kahana, B. Shilo, M. Rubinstein, and B. Cohen, Insulin induces transcripition of target genes through the hypoxia-inducible factor HIF-1alpha/ARNT, EMBO J 17:5085–5094 (1998).CrossRefPubMedGoogle Scholar
  182. 182.
    T. Soucek, R. Cumming, R. Dargusch, P. Maher, and D. Schubert, The regulation of glucose metabolism by HIF-1 mediates a neuroprotective response to amyloid beta peptide, Neuron 39:43–56 (2003).CrossRefPubMedGoogle Scholar
  183. 183.
    V. Easwaran, S. H. Lee, L. Inge, et al., beta-Catenin regulates vascular endothelial growth factor expression in colon cancer, Cancer Res 63:3145–53 (2003).PubMedGoogle Scholar
  184. 184.
    T. T. Tang, and L. A. Lasky, The forkhead transcription factor FOXO4 induces the down-regulation of hypoxia-inducible factor 1 alpha by a von Hippel-Lindau proteinindependent mechanism, J Biol Chem 278:30125–35 (2003).PubMedGoogle Scholar
  185. 185.
    J. Dypbukt, M. Ankarcrona, M. Burkitt, et al., Different prooxidant levels stimulate growth, trigger apoptosis, or produce necrosis of insulin-secreting RINm5F cells: The role of intracellular polyamines., J Biol Chem 269:30553–30560 (1994).PubMedGoogle Scholar
  186. 186.
    V. Borutaite, and G. Brown, Caspases are reversibly inactivated by hydrogen peroxide., FEBS Lett. 500:114–118 (2001).CrossRefPubMedGoogle Scholar
  187. 187.
    R. Ockner, R. Kaikaus, and N. Bass, Fatty acid metabolism and the pathogenesis of hepatocellular carcinoma: review and hypothesis, Hepatology 18:669–676 (1993).PubMedGoogle Scholar
  188. 188.
    Q. Zhang, D. Piston, and R. Goodman, Regulation of corepressor function by nuclear NADH, Science 295:1895–1897 (2002).PubMedGoogle Scholar
  189. 189.
    F. H. Agani, M. Puchowicz, J. C. Chavez, P. Pichiule, and J. LaManna, Role of nitric oxide in the regulation of HIF-1 alpha expression during hypoxia, Am J Physiol Cell Physiol 283:C178–86 (2002).PubMedGoogle Scholar
  190. 190.
    T. J. Collins, M. J. Berridge, P. Lipp, and M. D. Bootman, Mitochondria are morphologically and functionally heterogeneous within cells, Embo J 21:1616–27 (2002).CrossRefPubMedGoogle Scholar
  191. 191.
    M. B. Elowitz, A. J. Levine, E. D. Siggia, and P. S. Swain, Stochastic gene expression in a single cell, Science 297:1183–6 (2002).CrossRefPubMedGoogle Scholar
  192. 192.
    N. Fedoroff, and W. Fontana, Genetic networks. Small numbers of big molecules, Science 297:1129–31 (2002).CrossRefPubMedGoogle Scholar
  193. 193.
    J. M. Levsky, S. M. Shenoy, R. C. Pezo, and R. H. Singer, Single-cell gene expression profiling, Science 297:836–40 (2002).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2004

Personalised recommendations