Advertisement

Utilization of Oxidizable Substrates in Brain

Keywords

Electron Transport Chain Fatty Acid Oxidation Ketone Body Oxidizable Substrate Citric Acid Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

12.6. References

  1. 1.
    D. Dwyer, Ed., Glucose metabolism in the brain, International Review of Neurobiology; Series Editors RJ Bradley, RA Harris, and P Jenner 51 (2002).Google Scholar
  2. 2.
    S. Vannucci, F. Maher, and I. Simpson, Glucose transporter proteins in brain: delivery of glucose to neurons and glia, Glia 21:2–21 (1997).CrossRefPubMedGoogle Scholar
  3. 3.
    M. Schwartz, D. Figlewicz, D. Baskin, S. Woods, and D. Porte, Jr, Insulin in the brain: a hormonal regulator of energy balance, Endocrine Reviews 13:387–414 (1992).PubMedGoogle Scholar
  4. 4.
    P. Freychet, Insulin receptors and insulin actions in the nervous system, Diabetes/Metab Res Rev 16:390–392 (2000).Google Scholar
  5. 5.
    C. Park, Cognitive effects of insulin in the central nervous system, Neurosci Biobehav Rev 25:311–323 (2001).CrossRefPubMedGoogle Scholar
  6. 6.
    A. Chaudhuri, Y. Kanjwal, P. Mohanty, et al., Insulin-induced vasodilatation of internal carotid artery, Metab Clin Exp 48:1470–1473 (1999).PubMedGoogle Scholar
  7. 7.
    S. Hasselbalch, G. Knudsen, C. Videbaek, et al., No effect of insulin on glucose blood-brain barrier transport and cerebral metabolism in humans, Diabetes 48:1915–1921 (1999).PubMedGoogle Scholar
  8. 8.
    J. C. Bruning, D. Gautam, D. J. Burks, et al., Role of brain insulin receptor in control of body weight and reproduction, Science 289:2122–5 (2000).CrossRefPubMedGoogle Scholar
  9. 9.
    C. Cheng, R. Reinhardt, W. Lee, G. Joncas, S. Patel, and C. Bondy, Insulin-like growth factor 1 regulates developing brain glucose metabolism, Proc Natl Acad Sci USA 97:10236–10241 (2000).CrossRefPubMedGoogle Scholar
  10. 10.
    L. Stryer, Biochemistry, W.H. Freeman and Co, New York (1995).Google Scholar
  11. 11.
    E. McCabe, Microcompartmentation of energy metabolism at the outer mitochondrial membrane: role in diabetes mellitus and other diseases, J Bioenergetics Biomembranes 26:317–325 (1994).Google Scholar
  12. 12.
    G. Beutner, A. Rück, B. Riede, and D. Brdiczka, Complexes between hexokinase, mitochondrial porin and adenylate translocator in brain: regulation of hexokinase, oxidative phosphorylation and permeability transition pore, Biochem Soc Transactions 25:151–157 (1997).Google Scholar
  13. 13.
    N. Zamzami, C. Brenner, I. Marzo, S. Susin, and G. Kroemer, Subcellular and submitochondrial mode of action of Bcl-2-like oncoproteins, Oncogene 16:2265–2282 (1998).PubMedGoogle Scholar
  14. 14.
    I. Marzo, C. Brenner, N. Zamzami, et al., The permeability transition pore complex: a target for apoptosis regulation by caspases and Bcl-2-related proteins, J Exp Med 187:1261–1271 (1998).CrossRefPubMedGoogle Scholar
  15. 15.
    V. V. Lemeshko, Model of the outer membrane potential generation by the inner membrane of mitochondria, Biophys J 82:684–92 (2002).PubMedGoogle Scholar
  16. 16.
    D. Gincel, S. Silberberg, and V. Shoshan-Barmatz, Modulation of the voltage-dependent anion channel (VDAC) by glutamate, J Bioenerg Biomembranes 32:571–583 (2000).Google Scholar
  17. 17.
    R. Behal, D. Buxton, J. Robertson, and M. Olson, Regulation of the pyruvate dehydrogenase multienzyme complex, Annu Rev Nutr 13:497–520 (1993).CrossRefPubMedGoogle Scholar
  18. 18.
    O. Owen, A. Morgan, H. Kemp, J. Sullivan, M. Herrera, and G. Cahill, Jr, Brain metabolism during fasting, J Clin Invest 46:1589–1595 (1967).PubMedGoogle Scholar
  19. 19.
    A. Smith, H. Satterthwaite, and L. Sokoloff, Induction of brain D(-)-beta-hydroxybytrate dehydrogenase activity by fasting, Science 163:79–81 (1969).PubMedGoogle Scholar
  20. 20.
    J. W. Pan, R. A. de Graaf, K. F. Petersen, G. I. Shulman, H. P. Hetherington, and D. L. Rothman, [2,4-13 C2 ]-beta-Hydroxybutyrate metabolism in human brain, J Cereb Blood Flow Metab 22:890–8 (2002).PubMedGoogle Scholar
  21. 21.
    S. Hasselbalch, G. Knudsen, J. Jakobsen, L. Hageman, S. Holm, and O. Paulson, Brain metabolism during short-term starvation in humans, J Cerebral Blood Flow Metab 14:125–31 (1994).Google Scholar
  22. 22.
    S. Hasselbalch, G. Knudsen, J. Jakobsen, L. Hageman, S. Holm, and O. Paulson, Blood-brain barrier permeability of glucose and ketone bodies during short-term starvation in humans, Am J Physiol 268:E1161–6 (1995).PubMedGoogle Scholar
  23. 23.
    S. Hasselbalch, P. Madsen, L. Hageman, et al., Changes in cerebral blood flow and carbohydrate metabolism during acute hyperketonemia, Am J Physiol 270:E746–51 (1996).PubMedGoogle Scholar
  24. 24.
    P. Crane, W. Pardridge, L. Braun, and W. Oldendorf, Two-day starvation does not alter the kinetics of blood-brain barrier transport and phosphorylation of glucose in rat brain, J Cerebral Blood Flow Metab 5:40–46 (1985).Google Scholar
  25. 25.
    C. Redies, L. Hoffer, C. Biel, et al., Generalized decrease in brain glucose metabolism during fasting in humans studied by PET, Am J Physiol 256:E805–E810 (1989).PubMedGoogle Scholar
  26. 26.
    G. Blomqvist, M. Alvarsson, V. Grill, et al., Effect of acute hyperketonemia on the cerebral uptake of ketone bodies in nondiabetic subjects and IDDM patients, Am J Physiol Endocrinol Metab 283:E20–8 (2002).PubMedGoogle Scholar
  27. 27.
    T. Moore, A. Lione, M. Sugden, and D. Regen, Beta-hydroxybutyrate transport in rat brain: development and dietary modulations, Am J Physiol 230:619–630 (1976).PubMedGoogle Scholar
  28. 28.
    L. Pellerin, G. Pellegri, J.-L. Martin, and P. Magistretti, Expression of monocarboxylate transporter mRNAs in mouse brain: support for a distinct role of lactate as an energy substrate for the neonatal vs adult brain, Proc Natl Aca Sci USA 95:3990–3995 (1998).Google Scholar
  29. 29.
    J. Tildon, M. McKenna, and J. Stevenson, Jr, Transport of 3-hydroxybutyrate by cultured rat brain astrocytes, Neurochem Res 19:1237–42 (1994).CrossRefPubMedGoogle Scholar
  30. 30.
    M. Yudkoff, Y. Daikhin, I. Nissim, R. Grunstein, and I. Nissim, Effects of ketone bodies on astrocyte amino acid metabolism, J Neurochem 69:682–92 (1997).PubMedGoogle Scholar
  31. 31.
    G. Wilkinson, Clearance approaches in pharmacology, Pharmacol Rev 39: 1–47 (1987).PubMedGoogle Scholar
  32. 32.
    F. Palmieri, F. Bisaccia, L. Capobianco, et al., Mitochondrial metabolite transporters, Biochim Biophys Acta 1275:127–132 (1996).PubMedGoogle Scholar
  33. 33.
    A. Halestrap, Pyruvate and ketone-body transport across the mitochondrial membrane: Exchange properties, pH-dependence and mechanism of the carrier, Biochem J 172:377–387 (1978).PubMedGoogle Scholar
  34. 34.
    S. Pande, and R. Parvin, Pyruvate and acetoacetate transport in mitochondria: A reappraisal, J Biol Chem 253:1565–1573 (1978).PubMedGoogle Scholar
  35. 35.
    W. Zhang, S. Churchill, and P. Churchill, Developmental regulation of D-beta-hydroxybutyrate dehydrogenase in rat liver and brain, FEBS Lett 256:71–74 (1989).CrossRefPubMedGoogle Scholar
  36. 36.
    L. Wojtczak, and P. Schönfeld, Effect of fatty acids on energy coupling processes in mitochondria, Biochim Biophys Acta 1183:41–57 (1993).PubMedGoogle Scholar
  37. 37.
    L. Svensson, S. Kilpeläinen, J. Hiltunen, and S. Alexson, Characterization and isolation of enzymes that hydrolyze short-chain acyl-CoA in rat-liver mitochondria, Eur J Biochem 239:526–31 (1996).CrossRefPubMedGoogle Scholar
  38. 38.
    I. Reynolds, and T. Hastings, Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation, J Neurosci 15:3318–3327 (1995).PubMedGoogle Scholar
  39. 39.
    V. Skulachev, Role of uncoupled and non-coupled oxidations in maintenance of safely low levels of oxygen and its one-electron reductants, Quart Rev Biophys 29:169–202 (1996).Google Scholar
  40. 40.
    A. Négre-Salvayre, C. Hirtz, G. Carrera, et al., A role for uncoupling protein-2 as a regulator of mitochondrial hydrogen peroxide generation, FASEB J 11:809–815 (1997).PubMedGoogle Scholar
  41. 41.
    A. Stout, H. Raphael, B. Kanterewicz, E. Klann, and I. Reynolds, Glutamate-induced neuron death requires mitochondrial calcium uptake, Nature Neurosci 1:366–373 (1998).PubMedGoogle Scholar
  42. 42.
    S. Korshunov, O. Korkina, E. Ruuge, V. Skulachev, and A. Starkov, Fatty acids as natural uncouplers preventing generation of O2-and H2O2 by mitochondria in the resting state, FEBS Letts 435:215–218 (1998).CrossRefGoogle Scholar
  43. 43.
    K. Tieu, C. Perier, C. Caspersen, et al., D-beta-hydroxybutyrate rescues mitochondrial respiration and mitigates features of Parkinson disease., Journal of Clinical Investigation 112:892–901 (2003).CrossRefPubMedGoogle Scholar
  44. 44.
    R. Ockner, N. Lysenko, N. Wu, and N. Bass, Hepatocyte growth inhibitors modulate mitochondrial and extramitochondrial fatty acid oxidation [Abstract], Hepatology 24:253A (1996).Google Scholar
  45. 45.
    M. Olson, S. Dennis, M. DeBuysere, and A. Padma, The regulation of pyruvate dehydrogenase in the isolated perfused rat heart, J Biol Chem 253:7369–7375 (1978).PubMedGoogle Scholar
  46. 46.
    M. Tisdale, Role of acetoacetyl-CoA synthetase in acetoacetate utilization by tumor cells, Cancer Biochem Biophys 7:101–107 (1984).PubMedGoogle Scholar
  47. 47.
    P. Garland, E. Newsholme, and P. Randle, Effects of fatty acids and ketone bodies and of alloxan-diabetes and starvation on pyruvate metabolism and on lactate/pyruvate and L-glycerol 3-phosphate/dihydroxy acetone phosphate concentration ratios in rat heart and rat diaphragm muscles, Biochem J 93:665–678 (1964).PubMedGoogle Scholar
  48. 48.
    J. Batenburg, and M. Olson, Regulation of pyruvate dehydrogenase by fatty acid in isolated rat liver mitochondria, J Biol Chem 251:1364–1370 (1976).PubMedGoogle Scholar
  49. 49.
    P. J. Randle, Regulatory interactions between lipids and carbohydrates: the glucose fatty acid cycle after 35 years, Diabetes Metab Rev 14:263–83 (1998).CrossRefPubMedGoogle Scholar
  50. 50.
    G. Boden, and G. I. Shulman, Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and beta-cell dysfunction, Eur J Clin Invest 32Suppl 3:14–23 (2002).PubMedGoogle Scholar
  51. 51.
    T. Kawaguchi, K. Osatomi, H. Yamashita, T. Kabashima, and K. Uyeda, Mechanism for fatty acid “sparing” effect on glucose-induced transcription: regulation of carbohydrate-responsive element-binding protein by AMP-activated protein kinase, J Biol Chem 277:3829–3835 (2002).PubMedGoogle Scholar
  52. 52.
    R. Russell, 3d, G. Cline, P. Guthrie, G. Goodwin, G. Shulman, and H. Taegtmeyer, Regulation of exogenous and endogenous glucose metabolism by insulin and acetoacetate in the isolated working rat heart: A three tracer study of glycolysis, glycogen metabolism, and glucose oxidation, J Clin Invest 100:2892–2899 (1997).PubMedGoogle Scholar
  53. 53.
    Y. Kashiwaya, M. King, and R. Veech, Substrate signaling by insulin: a ketone bodies ratio mimics insulin action in heart, Am J Cardiol 80:50A–64A (1997).PubMedGoogle Scholar
  54. 54.
    R. Russell, 3d, and H. Taegtmeyer, Changes in citric acid cycle flux and anaplerosis antedate the functional decline in isolated rat hearts utilizing acetoacetate, J Clin Invest 87:384–390 (1991).PubMedGoogle Scholar
  55. 55.
    R. Russell, 3d, and H. Taegtmeyer, Coenzyme A sequestration in rat hearts oxidizing ketone bodies, J Clin Invest 89:968–973 (1992).PubMedGoogle Scholar
  56. 56.
    Y. Izumi, K. Ishii, H. Katsuki, A. Benz, Zorumski, and CF, beta-Hydroxybutyrate fuels synaptic function during development: Histological and physiological evidence in rat hippocampal slices, J Clin Invest 101:1121–1132 (1998).PubMedGoogle Scholar
  57. 57.
    Y. Kashiwaya, T. Takeshima, N. Mori, K. Nakashima, K. Clarke, and R. Veech, D-beta-hydroxybutyrate protects neurons in models of Alzheimer’s and Parkinson’s disease, Proc Natl Acad Sci USA 97:5440–5444 (2000).CrossRefPubMedGoogle Scholar
  58. 58.
    Y. Yeh, Biosynthesis of phospholipids and sphingolipids from acetoacetate and glucose in different regions of developing brain in vivo, Journal of Neuroscience Research 11:383–394 (1984).CrossRefPubMedGoogle Scholar
  59. 59.
    J. Edmond, Energy metabolism in developing brain cells, Can J Physiol Pharmacol 70:S118–29 (1992).PubMedGoogle Scholar
  60. 60.
    L. Roeder, S. Poduslo, and J. Tildon, Utilization of ketone bodies and glucose by established neural cell lines, Journal of Neuroscience Research 8:671–682 (1982).CrossRefPubMedGoogle Scholar
  61. 61.
    A. Lapidot, and S. Haber, Effect of endogenous beta-hydroxybutyrate on brain glucose metabolism in fetuses of diabetic rabbits, studied by (13)C magnetic resonance spectroscopy, Brain Res Dev Brain Res 135:87–99 (2002).PubMedGoogle Scholar
  62. 62.
    X. Yang, L. Borg, and U. Eriksson, Metabolic alteration in neural tissue of rat embryos exposed to beta-hydroxybutyrate during organogenesis, Life Sci 62:293–300 (1998).PubMedGoogle Scholar
  63. 63.
    G. Dhopeshwarkar, Uptake and transport of fatty acids into the breain and the role of the blood-brain barrier system, Adv Lipid Res 11:109–142 (1973).PubMedGoogle Scholar
  64. 64.
    R. Spector, Fatty acid transport through the blood-brain barrier, J Neurochem 50:639–643 (1988).PubMedGoogle Scholar
  65. 65.
    P. Robinson, J. Noronha, J. DeGeroge, L. Freed, T. Nariai, and S. Rapoport, A quantitative method for measuring regional in vivo fatty-acid incorporation into and turnover within brain phospholipids: review and critical analysis, Brain Res Rev 17:187–214 (1992).CrossRefPubMedGoogle Scholar
  66. 66.
    J. Miller, J. Gnaedinger, and S. Rapoport, Utlization of plasma fatty acid in rat brain: distribution of [14C]palmitate between oxidative and synthetic pathways, J Neurochem 49:1507–1514 (1987).PubMedGoogle Scholar
  67. 67.
    J. Gnaedinger, J. Miller, C. Latker, and S. Rapoport, Cerebral metabolism of plasma [14C]palmitate in awake, adult rat: subcellular localization, Neurochem Res 13:21–29 (1988).CrossRefPubMedGoogle Scholar
  68. 68.
    S. Rapoport, In vivo fatty acid incorporation into brain phospholipids in relation to signal transduction and membrane remodeling, Neurochemical Research 24:1403–15 (1999A).CrossRefPubMedGoogle Scholar
  69. 69.
    J. Glatz, J. Luiken, F. van Nieuwenhoven, and G. Van der Vusse, Molecular mechanism of cellular uptake and intracellular translocation of fatty acids, Prostaglandins Leukotrienes and Essential Fatty Acids 57:3–9 (1997).Google Scholar
  70. 70.
    A. Kimes, D. Sweeney, E. London, and S. Rapoport, Palmitate incorporation into different brain regions in the awake rat, Brain Res 274:291–301 (1983).CrossRefPubMedGoogle Scholar
  71. 71.
    M. Chang, T. Arai, L. Freed, et al., Brain incorporation of [1–11C]arachidonate in normocapnic and hypercapnic monkeys measured with positron emission tomography, Brain Res 755:74–83 (1997B).CrossRefPubMedGoogle Scholar
  72. 72.
    I. Goldberg, D. Soprano, M. Wyatt, T. Vanni, T. Kirchgessner, and M. Schotz, Localization of lipoprotein lipase mRNA in selected rat tissues, J Lipid Res 30:1569–1577 (1989).PubMedGoogle Scholar
  73. 73.
    D. Bessesen, C. Richards, J. Etienne, J. Goers, and R. Eckel, Spinal cord of the rat contains more lipoprotein lipase than other brain regions, J Lipid Res 34:229–238 (1993).PubMedGoogle Scholar
  74. 74.
    D. Purdon, T. Arai, and S. Rapoport, No evidence for direct incorporation of esterified palmitic acid from plasma into brain lipids of awake adult rat, J Lipid Res 38:526–30 (1997).PubMedGoogle Scholar
  75. 75.
    D. Bernlohr, M. Simpson, A. Hertzel, and L. Banaszak, Intracellular lipid-binding proteins and their genes, Ann Rev Nutr 17:277–303 (1997).Google Scholar
  76. 76.
    T. Fujino, and T. Yamamoto, Cloning and functional expression of a novel long-chain acyl-CoA synthetase expressed in brain, J Biochem 111:197–203 (1992).PubMedGoogle Scholar
  77. 77.
    T. Arai, S. Wakabayashi, M. Channing, et al., Incorporation of [1-carbon-11]palmitate in monkey brain using PET, J Nuclear Med 36:2261–2267 (1995).Google Scholar
  78. 78.
    C. Blázquez, Sánchez, C, G. Velasco, and M. Guzmán, Role of carnitine palmitoyltransferase I in the control of ketogenesis in primary cultures of rat astrocytes, J Neurochem 71:1597–1606 (1998).PubMedGoogle Scholar
  79. 79.
    N. Brown, J. Hill, V. Esser, et al., Mouse white adipocytes and 3T3-L1 cells display an anomalous pattern of carnitine palmitoyltransferase (CPT) I isoform expression during differentiation: Inter-tissue and inter-species expression of CPT I and CPT II enzymes, Biochem J 327:225–231 (1997).PubMedGoogle Scholar
  80. 80.
    N. Price, F. van der Leij, V. Jackson, et al., A novel brain-expressed protein related to carnitine palmitoyltransferase I, Genomics 80:433–42 (2002).CrossRefPubMedGoogle Scholar
  81. 81.
    M. Chang, S. Wakabayashi, and J. Bell, The effect of methyl palmoxirate on incorporation of [U-14C]palmitate into rat brain, Neurochem Res 19:1217–1223 (1994).CrossRefPubMedGoogle Scholar
  82. 82.
    L. Freed, S. Wakabayashi, J. Bell, and S. Rapoport, Effect of inhibition of beta-oxidation on incorporation of [U-14C]palmitate and [1-14C]arachidonate into brain lipids, Brain Res 645:41–48 (1994).CrossRefPubMedGoogle Scholar
  83. 83.
    M. Chang, E. Grange, O. Rabin, and J. Bell, Incorporation of [U-14C]palmitate into rat brain: effect of an inhibitor of beta-oxidation, J Lipid Res 38:295–300 (1997A).PubMedGoogle Scholar
  84. 84.
    C. Horn, and M. Friedman, Methyl palmoxirate increases eating behavior and brain Fos-like immunoreactivity in rats, Brain Res 781:8–14 (1998).CrossRefPubMedGoogle Scholar
  85. 85.
    M. I. Friedman, R. B. Harris, H. Ji, I. Ramirez, and M. G. Tordoff, Fatty acid oxidation affects food intake by altering hepatic energy status, Am J Physiol 276:R1046–53 (1999).PubMedGoogle Scholar
  86. 86.
    A. Kahler, M. Zimmermann, and W. Langhans, Suppression of hepatic fatty acid oxidation and food intake in men, Nutrition 15:819–28 (1999).CrossRefPubMedGoogle Scholar
  87. 87.
    N. Kawamura, and Y. Kishimoto, Characterization of water-soluble products of palmitic acid beta-oxidation by a rat brain preparation, J Neurochem 36:1786–1791 (1981).PubMedGoogle Scholar
  88. 88.
    N. Auestad, R. Korsak, J. Morrow, and J. Edmond, Fatty acid oxidation and ketogenesis by astrocytes in primary culture, J Neurochem 56:1376–1386 (1991).PubMedGoogle Scholar
  89. 89.
    C. Blázquez, C. Sánchez, A. Daza, I. Galve-Roperh, and M. Guzmán, The stimulation of ketogenesis by cannabinoids in cultured astrocytes defines carnitine palmitoyltransferase I as a new ceramide-activated enzyme, J Neurochem 72:1759–1768 (1999A).PubMedGoogle Scholar
  90. 90.
    J. Bourre, and M. Piciotti, Alterations in eighteen-carbon saturated, monounsaturated and plolyunsatruated fatty acid peroxisomal oxidation in mouse brain during development and aging, Biochem Molec Biol Intl 41:461–468 (1997).Google Scholar
  91. 91.
    P. Burra, M. Dam, F. Chierichetti, et al., 18F-fluorodeoxyglucose positron emission tomography study of brain metabolism in cirrhosis: effect of liver transplantation, Transplant Proc 31:418–420 (1999).CrossRefPubMedGoogle Scholar
  92. 92.
    G. Sarna, M. Bradbury, J. Cremer, J. Lai, and H. Teal, Brain metabolism and specific transport at the blood-brain barrier after portocaval anastomosis in the rat, Brain Res 160:69–83 (1979).CrossRefPubMedGoogle Scholar
  93. 93.
    S. Ponchaut, and K. Veitch, Valproate and mitochondria, Biochem Pharmacol 46:199–204 (1993).CrossRefPubMedGoogle Scholar
  94. 94.
    T. Cullingford, K. Bhakoo, S. Peuchen, C. Dolphin, R. Patel, and J. Clark, Distribution of mRNAs encoding the peroxisome proliferator-activated receptor alpha, beta, and gamma and the retinoid X receptor alpha, beta, and gamma in rat central nervous system, J Neurochem 70:1366–1375 (1998).PubMedGoogle Scholar
  95. 95.
    J. Granneman, R. Skoff, and X. Yang, Member of the peroxisome proliferator-activated receptor family of transcription factors is differentially expressed by oligodendrocytes, J Neurosci Res 51:563–573 (1998).CrossRefPubMedGoogle Scholar
  96. 96.
    N. Chattopadhyay, D. Singh, O. Heese, et al., Expression of peroxisome proliferator-activated receptors (PPARs) in human astrocytic cells: PPARgamma agonists as inducers of apoptosis, J Neurosci Res 61:67–74 (2000).CrossRefPubMedGoogle Scholar
  97. 97.
    M. C. Sugden, K. Bulmer, G. F. Gibbons, B. L. Knight, and M. J. Holness, Peroxisome-proliferator-activated receptor-alpha (PPARalpha) deficiency leads to dysregulation of hepatic lipid and carbohydrate metabolism by fatty acids and insulin, Biochem J 364:361–8 (2002).CrossRefPubMedGoogle Scholar
  98. 98.
    R. Ockner, Apoptosis and liver diseases: Recent concepts of mechanism and significance, J Gastroenterol Hepatol 16:248–260 (2001).CrossRefPubMedGoogle Scholar
  99. 99.
    S. Mills, D. Foster, and J. McGarry, Interaction of malonyl-CoA and related compounds with mitochondria from different rat tissues:Relationship between ligand binding and inhibition of carnitine palmitoyltransferase I, Biochem J 214:83–91 (1983).PubMedGoogle Scholar
  100. 100.
    L. Drynan, P. Quant, and V. Zammit, Flux control exerted by mitochondrial outer membrane carnitine palmitoyltransferase over beta-oxidation, ketogenesis and tricarboxylic acid cycle activity in hepatocytes isolated from rats in different metabolic states, Biochem J 317:791–795 (1996A).PubMedGoogle Scholar
  101. 101.
    L. Drynan, P. Quant, and V. Zammit, The role of changes in the sensitivity of hepatic mitochondrial overt carnitine palmitoyltransferase in determining the onset of the ketosis of starvation in the rat, Biochem J 318:767–770 (1996B).PubMedGoogle Scholar
  102. 102.
    J. Sleboda, K. Risan, O. Spydevold, and J. Bremer, Short-term regulation of carnitine palmitoyltransferase I in cultured rat hepatocytes: spontaneous inactivation and reactivation by fatty acids, Biochim Biophys Acta 1436:541–549 (1999).PubMedGoogle Scholar
  103. 103.
    J. McGarry, and N. Brown, Reconstitution of purified, active and malonyl-CoA-sensitive rat liver carnitine palmitoyltransferase I: relationship between membrane environment and malonyl-CoA sensitivity, Biochem J 349:179–187 (2000).CrossRefPubMedGoogle Scholar
  104. 104.
    W. Ong, C. Hu, Y. Soh, T. Lim, P. Pentchev, and S. Patel, Neuronal localization of sterol regulatory element binding protein-1 in the rodent and primate brain: A light and electron microscopic immunocytochemical study, Neurosci 97:143–153 (2000).CrossRefGoogle Scholar
  105. 105.
    J. Vance, C. De, EP, R. Campenot, and D. Vance, Role of axons in membrane phospholipid synthesis in rat sympathetic neurons, Neurobiol Aging 16:493–498 (1995).CrossRefPubMedGoogle Scholar
  106. 106.
    L. Abu-Elheiga, W. R. Brinkley, L. Zhong, S. S. Chirala, G. Woldegiorgis, and S. J. Wakil, The subcellular localization of acetyl-CoA carboxylase 2, Proc Natl Acad Sci U S A 97:1444–9 (2000).CrossRefPubMedGoogle Scholar
  107. 107.
    J. Sakamoto, R. Barr, K. Kavanagh, and G. Lopaschuk, Contribution of malonyl-CoA decarboxylase to the high fatty acid oxidation rates seen in the diabetic heart, Am J Physiol Heart Circ Physiol 278:H1196–H1204 (2000).PubMedGoogle Scholar
  108. 108.
    J. Alexander, A. Snyder, and J. Tonsgard, Omega-oxidation of monocarboxylic acids in rat brain, Neurochem Res 23:227–233 (1998).CrossRefPubMedGoogle Scholar
  109. 109.
    J. Bylund, C. Zhang, and D. R. Harder, Identification of a novel cytochrome P450, CYP4X1, with unique localization specific to the brain, Biochem Biophys Res Commun 296:677–84 (2002).CrossRefPubMedGoogle Scholar
  110. 110.
    R. Kaikaus, W. Chan, N. Lysenko, R. Ray, P. Ortiz deMontellano, and N. Bass, Induction of peroxisomal fatty acid beta-oxidation and liver fatty acid binding protein by peroxisome proliferators: Mediation via the cytochrome P-450 4A1 omegahydroxylase pathway, J Biol Chem 268:9592–9603 (1993).Google Scholar
  111. 111.
    D. Richard, S. Clavel, Q. Huang, D. Sanchis, and D. Ricquier, Uncoupling protein 2 in the brain: distribution and function, Biochem Soc Trans 29:812–817 (2001).CrossRefPubMedGoogle Scholar
  112. 112.
    T. Horvath, C. Warden, M. Hajos, A. Lombardi, F. Goglia, and S. Diano, Brain uncoupling protein 2: uncoupled neuronal mitochondria predict thermal synapses in homeostatic centers, J Neurosci 19:10417–10427 (1999).PubMedGoogle Scholar
  113. 113.
    S. Diano, H. Urbanski, B. Horvath, et al., Mitochondrial uncoupling protein 2 (UCP2) in the nonhuman primate brain and pituitary, Endocrinol 141:4226–4238 (2000).CrossRefGoogle Scholar
  114. 114.
    T. L. Horvath, S. Diano, and C. Barnstable, Mitochondrial uncoupling protein 2 in the central nervous system: neuromodulator and neuroprotector, Biochem Pharmacol 65:1917–21 (2003).CrossRefPubMedGoogle Scholar
  115. 115.
    O. Boss, P. Muzzin, and J.-P. Glacobino, The uncoupling proteins, a review, European Journal of Endocrinology 139:1–9 (1998).CrossRefPubMedGoogle Scholar
  116. 116.
    K. Chavin, S. Yang, H. Lin, et al., Obesity induces expression of uncoupling protein-2 in hepatocytes and promotes liver ATP depletion, J Biol Chem 26274:5692–5700 (1999).Google Scholar
  117. 117.
    M. Jaburek, M. Varecha, R. Gimeno, et al., Transport function and regulation of mitochondrial uncoupling proteins 2 and 3, J Biol Chem 274:26003–7 (1999).CrossRefPubMedGoogle Scholar
  118. 118.
    K. Echtay, D. Roussel, J. St-Pierre, et al., Superoxide activates mitochondrial uncoupling proteins, Nature 415:96–99 (2002).CrossRefPubMedGoogle Scholar
  119. 119.
    J. K. Young, Anatomical relationship between specialized astrocytes and leptin-sensitive neurones, J Anat 201:85–90 (2002).CrossRefPubMedGoogle Scholar
  120. 120.
    D. Yablonskiy, J. Ackerman, and M. Raichle, Coupling between changes in human brain temperature and oxidative metabolism during prolonged visual stimulation, Proc Natl Acad Sci USA 97:7603–7608 (2000).CrossRefPubMedGoogle Scholar
  121. 121.
    V. B. Hinderling, P. Schrauwen, W. Langhans, and M. S. Westerterp-Plantenga, The effect of etomoxir on 24-h substrate oxidation and satiety in humans, Am J Clin Nutr 76:141–7 (2002).PubMedGoogle Scholar
  122. 122.
    R. S. Ahima, and J. S. Flier, Leptin, Annu Rev Physiol 62:413–37 (2000).Google Scholar
  123. 123.
    A. Z. Zhao, M. M. Shinohara, D. Huang, et al., Leptin induces insulin-like signaling that antagonizes cAMP elevation by glucagon in hepatocytes, J Biol Chem 275:11348–54 (2000).PubMedGoogle Scholar
  124. 124.
    D. M. Muoio, G. L. Dohm, E. B. Tapscott, and R. A. Coleman, Leptin opposes insulin’s effects on fatty acid partitioning in muscles isolated from obese ob/ob mice, Am J Physiol 276:E913–21 (1999).PubMedGoogle Scholar
  125. 125.
    L. L. Atkinson, M. A. Fischer, and G. D. Lopaschuk, Leptin activates cardiac fatty acid oxidation independent of changes in the AMP-activated protein kinase-acetyl-CoA carboxylase-malonyl-CoA axis, J Biol Chem 277:29424–30 (2002).CrossRefPubMedGoogle Scholar
  126. 126.
    Y. Minokoshi, Y. Kim, O. Peroni, et al., Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase, Nature 415:339–343 (2002).CrossRefPubMedGoogle Scholar
  127. 127.
    G. Steinberg, A. Bonen, and D. Dyck, Fatty acid oxidation and triacylglycerol hydrolysis are enhanced after chronic leptin treatment in rats, Am J Physiol Endocrinol Metab 282:E593–E600 (2002A).PubMedGoogle Scholar
  128. 128.
    G. R. Steinberg, J. W. Rush, and D. J. Dyck, AMPK expression and phosphorylation are increased in rodent muscle after chronic leptin treatment, Am J Physiol Endocrinol Metab 284:E648–54 (2003).PubMedGoogle Scholar
  129. 129.
    G. Hynes, and P. Jones, Leptin and its role in lipid metabolism, Curr Opin Lipidol 12:321–327 (2001).CrossRefPubMedGoogle Scholar
  130. 130.
    S. Yamagishi, D. Edelstein, X. Du, Y. Kaneda, M. Guzman, and M. Brownlee, Leptin induces mitochondrial superoxide production and monocyte chemoattractant protein-1 expression in aortic endothelial cells by increasing fatty acid oxidation via protein kinase A, J Biol Chem 276:25096–25100 (2001).PubMedGoogle Scholar
  131. 131.
    R. L. Dobbins, L. S. Szczepaniak, W. Zhang, and J. D. McGarry, Chemical sympathectomy alters regulation of body weight during prolonged ICV leptin infusion, Am J Physiol Endocrinol Metab 284:E778–87 (2003).PubMedGoogle Scholar
  132. 132.
    D. Spanswick, M. A. Smith, V. E. Groppi, S. D. Logan, and M. L. Ashford, Leptin inhibits hypothalamic neurons by activation of ATP-sensitive potassium channels, Nature 390:521–5 (1997).PubMedGoogle Scholar
  133. 133.
    T. J. Kieffer, R. S. Heller, C. A. Leech, G. G. Holz, and J. F. Habener, Leptin suppression of insulin secretion by the activation of ATP-sensitive K+ channels in pancreatic beta-cells, Diabetes 46:1087–93 (1997).PubMedGoogle Scholar
  134. 134.
    G. Sonnenberg, G. Krakower, R. Hoffmann, D. Maas, M. Hennes, and A. Kissebah, Plasma leptin concentrations during extended fasting and graded glucose infusions: relationships with changes in glucose, insulin, and FFA, J Clin Endocrinol Metab 86:4895–4900 (2001).CrossRefPubMedGoogle Scholar
  135. 135.
    J. W. Kolaczynski, M. R. Nyce, R. V. Considine, et al., Acute and chronic effects of insulin on leptin production in humans: Studies in vivo and in vitro, Diabetes 45:699–701 (1996A).PubMedGoogle Scholar
  136. 136.
    J. W. Kolaczynski, R. V. Considine, J. Ohannesian, et al., Responses of leptin to short-term fasting and refeeding in humans: a link with ketogenesis but not ketones themselves, Diabetes 45:1511–5 (1996B).PubMedGoogle Scholar
  137. 137.
    G. Boden, X. Chen, J. W. Kolaczynski, and M. Polansky, Effects of prolonged hyperinsulinemia on serum leptin in normal human subjects, J Clin Invest 100:1107–13 (1997).PubMedGoogle Scholar
  138. 138.
    S. C. Woods, M. W. Schwartz, D. G. Baskin, and R. J. Seeley, Food intake and the regulation of body weight, Annu Rev Psychol 51:255–77 (2000).CrossRefPubMedGoogle Scholar
  139. 139.
    D. E. Cummings, and M. W. Schwartz, Genetics and pathophysiology of human obesity, Annu Rev Med 54:453–71 (2003).PubMedGoogle Scholar
  140. 140.
    G. Boden, X. Chen, M. Mozzoli, and I. Ryan, Effect of fasting on serum leptin in normal human subjects, J Clin Endocrinol Metab 81:3419–23 (1996).CrossRefPubMedGoogle Scholar
  141. 141.
    R. Saladin, P. De Vos, M. Guerre-Millo, et al., Transient increase in obese gene expression after food intake or insulin administration, Nature 377:527–9 (1995).CrossRefPubMedGoogle Scholar
  142. 142.
    B. Laferrere, A. Caixas, S. K. Fried, C. Bashore, J. Kim, and F. X. Pi-Sunyer, A pulse of insulin and dexamethasone stimulates serum leptin in fasting human subjects, Eur J Endocrinol 146:839–45 (2002).CrossRefPubMedGoogle Scholar
  143. 143.
    M. Shimabukuro, K. Koyama, G. Chen, et al., Direct antidiabetic effect of leptin through triglyceride depletion of tissues, Proc Natl Acad Sci U S A 94:4637–41 (1997).CrossRefPubMedGoogle Scholar
  144. 144.
    G. R. Steinberg, D. J. Dyck, J. Calles-Escandon, et al., Chronic leptin administration decreases fatty acid uptake and fatty acid transporters in rat skeletal muscle, J Biol Chem 277:8854–60 (2002B).CrossRefPubMedGoogle Scholar
  145. 145.
    J. D. McGarry, Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes, Diabetes 51:7–18 (2002).PubMedGoogle Scholar
  146. 146.
    E. L. Air, M. Z. Strowski, S. C. Benoit, et al., Small molecule insulin mimetics reduce food intake and body weight and prevent development of obesity, Nat Med 8:179–83 (2002).CrossRefPubMedGoogle Scholar
  147. 147.
    R. S. Ahima, D. Prabakaran, C. Mantzoros, et al., Role of leptin in the neuroendocrine response to fasting, Nature 382:250–2 (1996).CrossRefPubMedGoogle Scholar
  148. 148.
    J. L. Chan, K. Heist, A. M. DePaoli, J. D. Veldhuis, and C. S. Mantzoros, The role of falling leptin levels in the neuroendocrine and metabolic adaptation to short-term starvation in healthy men, J Clin Invest 111:1409–21 (2003).CrossRefPubMedGoogle Scholar
  149. 149.
    K. D. Niswender, G. J. Morton, W. H. Stearns, C. J. Rhodes, M. G. Myers, Jr., and M. W. Schwartz, Key enzyme in leptin-induced anorexia, Nature 413:794–5 (2001).CrossRefPubMedGoogle Scholar
  150. 150.
    J. Harvey, and M. L. Ashford, Leptin in the CNS: much more than a satiety signal, Neuropharmacology 44:845–54 (2003).CrossRefPubMedGoogle Scholar
  151. 151.
    C. Bjorbaek, S. Uotani, B. da Silva, and J. S. Flier, Divergent signaling capacities of the long and short isoforms of the leptin receptor, J Biol Chem 272:32686–95 (1997).PubMedGoogle Scholar
  152. 152.
    J. M. Zabolotny, K. K. Bence-Hanulec, A. Stricker-Krongrad, et al., PTP1B regulates leptin signal transduction in vivo, Dev Cell 2:489–95 (2002).CrossRefPubMedGoogle Scholar
  153. 153.
    L. Abu-Elheiga, M. M. Matzuk, K. A. Abo-Hashema, and S. J. Wakil, Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2, Science 291:2613–6 (2001).CrossRefPubMedGoogle Scholar
  154. 154.
    L. Abu-Elheiga, W. Oh, P. Kordari, and S. J. Wakil, Acetyl-CoA carboxylase 2 mutant mice are protected against obesity and diabetes induced by high-fat/high-carbohydrate diets., Proc Natl Aca Sci USA 100:10207–10212 (2003).Google Scholar
  155. 155.
    S. Obici, Z. Feng, A. Arduini, R. Conti, and L. Rossetti, Inhibition of hypothalamic carnitine palmitoyltransferase-1 decreases food intake and glucose production, Nat Med 9:756–61 (2003).CrossRefPubMedGoogle Scholar
  156. 156.
    V. Di Marzo, S. K. Goparaju, L. Wang, et al., Leptin-regulated endocannabinoids are involved in maintaining food intake, Nature 410:822–5 (2001).PubMedGoogle Scholar
  157. 157.
    D. Cota, G. Marsicano, M. Tschop, et al., The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis, J Clin Invest 112:423–31 (2003).CrossRefPubMedGoogle Scholar
  158. 158.
    M. Kumar, T. Shimokawa, T. Nagy, and M. Lane, Differential effects of a centrally acting fatty acid synthase inhibitor in lean and obese mice, Proc Natl Acad Sci U S A 99:1921–1925 (2002).PubMedGoogle Scholar
  159. 159.
    J. N. Thupari, L. E. Landree, G. V. Ronnett, and F. P. Kuhajda, C75 increases peripheral energy utilization and fatty acid oxidation in diet-induced obesity, Proc Natl Acad Sci U S A 99:9498–502 (2002).PubMedGoogle Scholar
  160. 160.
    E. K. Kim, I. Miller, L. E. Landree, et al., Expression of FAS within hypothalamic neurons: a model for decreased food intake after C75 treatment, Am J Physiol Endocrinol Metab 283:E867–79 (2002).PubMedGoogle Scholar
  161. 161.
    E. Sternberg, Neural-immune interactions in health and disease, J Clin Invest 100:2641–2647 (1997).PubMedGoogle Scholar
  162. 162.
    N. Rothwell, S. Allan, and S. Toulmond, The role of interleukin 1 in acute neurodegeneration and stroke: pathophysiological and therapeutic implications, J Clin Invest 100:2648–2652 (1997).PubMedGoogle Scholar
  163. 163.
    J. Licinio, and M.-L. Wong, Pathways and mechanisms for cytokine signaling of the central nervous system, J Clin Invest 100:2941–2947 (1997).PubMedGoogle Scholar
  164. 164.
    J. Raber, O. Sorg, T. Horn, et al., Inflammatory cytokines: putative regulators of neuronal and neuro-endocrine function, Brain Res Rev 26:320–326 (1998).CrossRefPubMedGoogle Scholar
  165. 165.
    M. Navasa, K. Feingold, and C. Grunfeld, Effects of endotoxin and cytokines on hepatic lipid metabolism, Prog Liver Dis 15:147–170 (1997).Google Scholar
  166. 166.
    G. Hotamisligil, P. Peraldi, A. Budavari, R. Ellis, M. White, and B. Spiegelman, IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha-and obesity-induced insulin resistance, Science 271:665–8 (1996A).PubMedGoogle Scholar
  167. 167.
    G. Hotamisligil, R. Johnson, R. Distel, R. Ellis, V. Papaioannou, and B. Spiegelman, Uncoupling of obesity from insulin resistance through a targeted mutation in aP2, the adipocyte fatty acid binding protein, Science 274:1377–1379 (1996B).CrossRefPubMedGoogle Scholar
  168. 168.
    C. Grunfeld, C. Dinarello, and K. Feingold, Tumor necrosis factor-alpha, interleukin-1, and interferon alpha stimulate triglyceride synthesis in HepG2 cells, Metabolism 40:894–898 (1991).CrossRefPubMedGoogle Scholar
  169. 169.
    E. Vara, J. Arias-Diaz, J. Torres-Melero, C. Garcia, J. Rodriguez, and J. Balibrea, Effect of different sepsis-related cytokines on lipid synthesis by isolated hepatocytes, Hepatology 20:924–931 (1994).PubMedGoogle Scholar
  170. 170.
    M. Beylot, H. Vidal, G. Mithieux, M. Odeon, and C. Martin, Inhibition of hepatic ketogenesis by tumor necrosis factor-alpha in rats, Am J Physiol 263:E897–E902 (1992).PubMedGoogle Scholar
  171. 171.
    L. Romero, I. Kakucska, R. Lechan, and S. Reichlin, Interleukin-6 (IL-6) is secreted from the brain after intracerebroventricular injection of IL-1 beta in rats, Am J Physiol 270:R518–R524 (1996).PubMedGoogle Scholar
  172. 172.
    N. Yu, J. Martin, N. Stella, and P. Magistretti, Arachidonic acid stimulates glucose uptake in cerebral cortical astrocytes, Proc Natl Acad Sci USA 90:4042–4046 (1993).PubMedGoogle Scholar
  173. 173.
    N. Yu, D. Maciejewski-Lenoir, F. Bloom, and P. Magistretti, Tumor necrosis factor-alpha and interleukin-1 alpha enhance glucose utilization by astrocytes: involvement of phospholipase A2, Molec Pharmacol 48:550–558 (1995).Google Scholar
  174. 174.
    B. Cheng, S. Christakos, and M. Mattson, Tumor necrosis factors protect neurons against metabolic-excitotoxic insults and promote maintenance of calcium homeostasis, Neuron 12:139–153 (1994).CrossRefPubMedGoogle Scholar
  175. 175.
    E. Beattie, D. Stellwagen, W. Morishita, et al., Control of synaptic strength by glial TNFalpha, Science 295:2282–2285 (2002).CrossRefPubMedGoogle Scholar
  176. 176.
    H. Ginsberg, Insulin resistance and cardiovascular disease, J Clin Invest 106:453–458 (2000).PubMedGoogle Scholar
  177. 177.
    P. Cryer, M. Haymond, J. Santiago, and S. Shah, Norepinephrine and epinephrine release and adrenergic mediation of smoking-associated hemodynamic and metabolic events, New England Journal of Medicine 295:573–7 (1976).PubMedGoogle Scholar
  178. 178.
    M. Hellerstein, N. Benowitz, R. Neese, et al., Effects of cigarette smoking and its cessation on lipid metabolism and energy expenditure in heavy smokers, Journal of Clinical Investigation 93:265–72 (1994).PubMedGoogle Scholar
  179. 179.
    K. Fattinger, D. Verotta, and N. Benowitz, Pharmacodynamics of acute tolerance to multiple nicotinic effects in humans, J Pharmacol Exp Ther 281:1238–46 (1997).PubMedGoogle Scholar
  180. 180.
    J. Rincón, A. Krook, D. Galuska, H. Wallberg-Henriksson, and J. Zierath, Altered skeletal muscle glucose transport and blood lipid levels in habitual cigarette smokers, Clin Physiol 19:135–142 (1999).PubMedGoogle Scholar
  181. 181.
    J. Manson, U. Ajani, S. Liu, D. Nathan, and C. Hennekens, A prospective study of cigarette smoking and the incidence of diabetes mellitus among US male physicians, Am J Med 109:538–542 (2000).CrossRefPubMedGoogle Scholar
  182. 182.
    K. Christopherson, and D. Bredt, Nitric oxide in excitable tissues: physiological roles and disease, J Clin Invest 100:2424–2429 (1997).PubMedGoogle Scholar
  183. 183.
    C. Chao, S. Hu, W. Sheng, D. Bu, M. Bukrinsky, and P. Peterson, Cytokine-stimulated astrocytes damage human neurons via a nitric oxide mechanism, Glia 16:276–284 (1996).CrossRefPubMedGoogle Scholar
  184. 184.
    J. Hu, A. Ferreira, and L. Van Eldik, S100beta induces neuronal cell death through nitric oxide release from astrocytes, J Neurochem 69:2294–2301 (1997).PubMedGoogle Scholar
  185. 185.
    M. Maes, and R. Smith, Fatty acids, cytokines, and major depression, Biol Psych 43:313–314 (1998).Google Scholar
  186. 186.
    V. Borutaité, and G. Brown, Rapid reduction of nitric oxide by mitochondria and reversible inhibition of mitochondrial respiration by nitric oxide, Biochem J 315:295–299 (1996).PubMedGoogle Scholar
  187. 187.
    I. Lizasoain, M. Moro, R. Knowles, V. Darley-Usmar, and S. Moncada, Nitric oxide and peroxynitrite exert distinct effects on mitochondrial respiration which are differentially blocked by glutathione or glucose, Biochem J 314:877–880 (1996).PubMedGoogle Scholar
  188. 188.
    J. Li, T. Billiar, R. Talanian, and Y. Kim, Nitric oxide reversibly inhibits seven members of the caspase family via S-nitrosylation, Biochem Biophys Res Commun 240:419–424 (1997).PubMedGoogle Scholar
  189. 189.
    Y. Kim, R. Talanian, and T. Billiar, Nitric oxide inhibits apoptosis by preventing increases in caspase-3-like activity via two distinct mechanisms, J Biol Chem 272:31138–31148 (1997).PubMedGoogle Scholar
  190. 190.
    S. Lipton, Y. Choi, Z. Pan, et al., A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds, Nature 364:626–632 (1993).PubMedGoogle Scholar
  191. 191.
    D. Wink, I. Hanbauer, M. Krishna, et al., Nitric oxide protects against cellular damage and cytotoxicity from reactive oxygen species, Proc Natl Acad Sci USA 90:9813–9817 (1993).PubMedGoogle Scholar
  192. 192.
    J. Bolaños, A. Almeida, E. Fernández, et al., Potential mechanisms for nitric oxide-mediated impairment of brain mitochondrial energy metabolism, Biochem Soc Transact 25:944–949 (1997A).Google Scholar
  193. 193.
    J. Bolaños, A. Almeida, V. Stewart, et al., Nitric oxide-mediated mitochondrial damage in the brain: mechanisms and implications for neurodegenerative diseases, J Neurochem 68:2227–2240 (1997B).PubMedGoogle Scholar
  194. 194.
    B. Beltrán, A. Mathur, M. Duchen, J. Erusalimsky, and S. Moncada, The effect of nitric oxide on cell respiration: A key to understanding its role in cell survival or death, Proc Natl Acad Sci USA 97:14602–14607 (2000).PubMedGoogle Scholar
  195. 195.
    P. García-Nogales, A. Almeida, and J. Bolaños, Peroxynitrite protects neurons against nitric oxide-mediated apoptosis, A key role for glucose-6-phosphate dehydrogenase in neuroprotection., Journal of Biological Chemistry 278:864–874 (2003).PubMedGoogle Scholar
  196. 196.
    K. Schulze-Osthoff, A. Bakker, B. Vanhaesebroeck, R. Beyaert, W. Jacob, and W. Fiers, Cytotoxic activity of tumor necrosis factor is mediated by early damage of mitochondrial functions: Evidence for the involvement of mitochondrial radical generation, J Biol Chem 267:5317–5323 (1992).PubMedGoogle Scholar
  197. 197.
    L. Obeid, C. Linardic, L. Karolak, and Y. Hannun, Programmed cell death induced by ceramide, Science 259:1769–1771 (1993).PubMedGoogle Scholar
  198. 198.
    R. Kolesnick, and M. Krönke, Regulation of ceramide production and apoptosis, Annu Rev Physiol 60:643–665 (1998).CrossRefPubMedGoogle Scholar
  199. 199.
    M. Burow, C. Weldon, B. Collins-Burow, et al., Cross-talk between phosphatidylinositol 3-kinase and sphingomyelinase pathways as a mechanism for cell survival/death decisions, J Biol Chem 275:9628–9635 (2000).CrossRefPubMedGoogle Scholar
  200. 200.
    T. Lin, L. Genestier, M. Pinkoski, et al., Role of acidic sphingomyelinase in Fas/CD95-mediated cell death, J Biol Chem 275:8657–8663 (2000).PubMedGoogle Scholar
  201. 201.
    P. Akerman, P. Cote, S. Yang, et al., Antibodies to tumor necrosis factor-alpha inhibit liver regeneration after partial hepatectomy, Am J Physiol 263:G579–G585 (1992).PubMedGoogle Scholar
  202. 202.
    D. Cressman, L. Greenbaum, R. DeAngelis, et al., Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice, Science 274:1379–1383 (1996).CrossRefPubMedGoogle Scholar
  203. 203.
    Y. Yamada, I. Kinillova, J. Reschou, and N. Fausto, Initiation of tumor growth by tumor necrosis factor: deficient liver regeneration in mice lacking type I tumor necrosis factor receptor, PNAS 94:1441–1446 (1997).PubMedGoogle Scholar
  204. 204.
    A. Beg, and D. Baltimore, An essential role for NK-kappaB in preventing TNF-alpha-induced cell death, Science 274:782–784 (1996).CrossRefPubMedGoogle Scholar
  205. 205.
    D. Van Antwerp, S. Martin, T. Kafri, D. Green, and I. Verma, Suppression of TNF-alpha-induced apoptosis by NF-kappaB, Science 274:787–789 (1996).PubMedGoogle Scholar
  206. 206.
    C.-Y. Wang, M. Mayo, and A. Baldwin, Jr, TNF-and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB, Science 274:784–787 (1996).CrossRefPubMedGoogle Scholar
  207. 207.
    S. Barger, D. Hörsier, K. Furukawa, Y. Goodman, J. Krieglstein, and M. Mattson, Tumor necrosis factors alpha and beta protect neurons against amyloid beta-peptide toxicity: evidence for involvement of a kappa B-binding factor and attenuation of peroxide and Ca2+ accumulation, Proc Natl Acad Sci USA 92:9328–9332 (1995).PubMedGoogle Scholar
  208. 208.
    C. Kaltschmidt, B. Kaltschmidt, and P. Baeuerle, Stimulation of ionotropic glutamate receptors activates transcription factor NF-kappa B in primary neurons, Proc Natl Acad Sci USA 92:9618–9822 (1995).PubMedGoogle Scholar
  209. 209.
    B. Kaltschmidt, M. Uherek, B. Volk, P. Baeuerle, and C. Kaltschmidt, Transcription factor NF-kappa B is activated in primary neurons by amyloid beta peptides and in neurons surrounding early plaques from patients with Alzheimer disease, Proc Natl Acad Sci USA 94:2642–2647 (1997).CrossRefPubMedGoogle Scholar
  210. 210.
    M. Mattson, Y. Goodman, H. Luo, W. Fu, Furukawa, and K, Activation of NF-kappa B protects hippocampal neurons against oxidative stress-induced apoptosis: evidence for induction of manganese superoxide dismutase and suppression of peroxynitrite production and protein tyrosine nitration, J Neurosci Res 49:681–697 (1997).CrossRefPubMedGoogle Scholar
  211. 211.
    A. Migheli, R. Piva, C. Atzori, D. Troost, and D. Schiffer, c-Jun, JNK/SAPK kinases and transcription factor NF-kappa B are selectively activated in astrocytes, but not motor neurons in amyotrophic lateral sclerosis, J Neuropathol Exp Neurol 56:1314–1322 (1997).PubMedGoogle Scholar
  212. 212.
    S. Lipton, Janus faces of NF-kappa B: neurodestruction versus neuroprotection, Nature Med 3:20–22 (1997).PubMedGoogle Scholar
  213. 213.
    G. Middleton, M. Hamanoue, Y. Enokido, et al., Cytokine-induced nuclear factor kappa B activation promotes the survival of developing neurons, J Cell Biol 148:325–332 (2000).PubMedGoogle Scholar
  214. 214.
    P. García-Nogales, A. Almeida, E. Fernández, J. Medina, and J. Bolaños, Induction of glucose-6-phosphate dehydrogenase by lipopolysaccharide contributes to preventing nitric oxide-mediated glutathione depletion in cultured rat astrocytes, J Neurochem 72:1750–8 (1999).PubMedGoogle Scholar
  215. 215.
    J. Tan, T. Town, A. Placzek, A. Kundtz, H. Yu, and M. Mullan, Bcl-X(L) inhibits apoptosis and necrosis produced by Alzheimer’s beta-amyloid1-40 peptide in PC 12 cells, Neuroscience Letters 272:5–8 (1999).CrossRefPubMedGoogle Scholar
  216. 216.
    T. Vos, H. Van Goor, L. Tuyt, et al., Expression of inducible nitric oxide synthase in endotoxemic rat hepatocytes is dependent on the cellular glutathione status, Hepatology 29:421–442 (1999).PubMedGoogle Scholar
  217. 217.
    K. Yamamoto, T. Arakawa, N. Ueda, and S. Yamamoto, Transcriptional roles of nuclear factor kappa B and nuclear factor-interleukin-6 in the tumor necrosis factor alpha-dependent induction of cyclooxygenase-2 in MC3T3-E1 cells, J Biol Chem 270:31315–31320 (1995).PubMedGoogle Scholar
  218. 218.
    M. Tamatani, Y. Che, H. Matsuzaki, et al., Tumor necrosis factor induces Bcl-2 and Bcl-x expression through NFkappaB activation in primary hippocampal neurons, J Biol Chem 274:8531–8538 (1999).CrossRefPubMedGoogle Scholar
  219. 219.
    O. Ozes, L. Mayo, J. Gustin, S. Pfeffer, L. Pfeffer, and D. Donner, NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase, Nature 401:82–85 (1999).PubMedGoogle Scholar
  220. 220.
    M. Grilli, M. Pizzi, M. Memo, Spano, and P, Neuroprotection by aspirin and sodium salicylate through blockade of NF-kappaB activation, Science 274:1383–1385 (1996).CrossRefPubMedGoogle Scholar
  221. 221.
    H. Ko, K. Park, H. Kim, et al., Ca2+-mediated activation of c-Jun N-terminal kinase and nuclear factor kappa B by NMDA in cortical cell cultures, J Neurochem 71:1390–1395 (1998).PubMedGoogle Scholar
  222. 222.
    M. Grilli, and M. Memo, Possible role of NF-kappaB and p53 in the glutamate-induced pro-apoptotic nuonal pathway, Cell Death Differen 6:22–27 (1999).Google Scholar
  223. 223.
    K. Bales, Y. Du, R. Dodel, G. Yan, E. Hamilton-Byrd, and S. Paul, The NF-kappaB/Rel family of proteins mediates A beta-induced neurotoxicity and glial activation, Molec Brain Res 57:63–72 (1998).CrossRefPubMedGoogle Scholar
  224. 224.
    N. Perkins, The Rel/NF-kappa B family: friend and foe, Trends Biochem Sci 25:434–440 (2000).CrossRefPubMedGoogle Scholar
  225. 225.
    M. Whitehouse, Uncoupling of oxidative phosphorylation in a connective tissue (cartilage) and liver mitochondria by salicylate analogues: Relationship of structure to activity, Biochem Pharmacol 13:319–336 (1964).CrossRefPubMedGoogle Scholar
  226. 226.
    M. Mehlman, R. Tobin, and E. Sporn, Oxidative phosphorylation and respiration by rat liver mitochondria from aspirin-treated rats, Biochem Pharmacol 21:3279–3285 (1972).PubMedGoogle Scholar
  227. 227.
    R. Haas, W. Parker, Jr., D. Stumpf, and L. Eguren, Salicylate-induced loose coupling: protonmotive force measurements, Biochem Pharmacol 34:900–902 (1985).CrossRefPubMedGoogle Scholar
  228. 228.
    S. Somasundaram, H. Hayllar, S. Rafi, J. Wrigglesworth, A. Macpherson, and I. Bjarnason, The biochemical basis of non-steroidal anti-inflammatory drug-induced damage to the gastrointestinal tract: a review and a hypothesis, Scand J Gastroenterol 30:289–299 (1995).PubMedGoogle Scholar
  229. 229.
    T. Mahmud, S. Rafi, D. Scott, J. Wrigglesworth, and I. Bjarnason, Nonsteroidal antiinflammatory drugs and uncoupling of mitochondrial oxidative phosphorylation, Arthritis Rheum 39:1998–2003 (1996).PubMedGoogle Scholar
  230. 230.
    C. Sen, and L. Packer, Antioxidant and redox regulation of gene transcription, FASEB J 10:709–720 (1996).PubMedGoogle Scholar
  231. 231.
    V. Lakshminarayanan, E. Drab-Weiss, and K. Roebuck, H2O2 and tumor necrosis factor-alpha induce differential binding of the redox-responsive transcription factors AP-1 and NF-kappaB to the interleukin-8 promoter in endothelial and epithelial cells, J Biol Chem 273:32670–32678 (1998).CrossRefPubMedGoogle Scholar
  232. 232.
    E. Shaulian, and M. Karin. AP-1 as a regulator of cell life and death, Nat Cell Biol 4:E131–6 (2002).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2004

Personalised recommendations