Skip to main content

Forward-in-time Differencing for Fluids: Simulation of Geophysical Turbulence

  • Chapter
Book cover Turbulent Flow Computation

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 66))

Abstract

The Earth’s atmosphere and oceans are essentially incompressible, highly turbulent fluids. Herein, we demonstrate that nonoscillatory forward-in-time (NFT) methods can be efficiently utilized to accurately simulate a broad range of flows in these fluids. NFT methods contrast with the more traditional centered-in-time-and-space approach that underlies the bulk of computational experience in the meteorological community. We challenge the common misconception that NFT schemes are overly diffusive and therefore inadequate for high Reynolds number flow simulations, and document their numerous benefits. In particular, we show that, in the absence of an explicit subgrid-scale turbulence model, NFT methods offer means of implicit subgrid-scale modeling that can be quite effective in assuring a quality large-eddy-simulation of high Reynolds number flows. The latter is especially important where complications such as large span of scales, density stratification, planetary rotation, inhomogeneity of the lower boundary, etc., make explicit modeling of subgrid-scale motions difficult. Theoretical discussions are illustrated with examples of meteorological flows that address the range of applications from micro turbulence to climate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Arakawa, “Computational design for long-term numerical integration of the equations of fluid motions: Two-dimensional incompressible flow”, J. Comput. Phys., 1, 119–143 (1966).

    Article  MATH  ADS  Google Scholar 

  2. P. Bartello, and S.J. Thomas, “The cost-effectiveness of semi-Lagrangian advection. Mon. Weather Rev., 124, 2883–2897 (1996).

    Article  ADS  Google Scholar 

  3. A.R. Brown, M. K. MacVean, and P. J. Mason, “The effects of numerical dissipation in large eddy simulations”, J. Atmos. Sci., 120, 3337–3348 (2000).

    Article  ADS  Google Scholar 

  4. F.H. Champagne, “The fine-scale structure of the turbulent velocity field”, J. Fluid Mech., 86, 67–108 (1978).

    Article  ADS  Google Scholar 

  5. A.J. Chorin, “Numerical solution of the Navier-Stokes equations”, Math. Comp., 22, 742–762 (1968).

    Article  MathSciNet  Google Scholar 

  6. T.L. Clark, and R. D. Farley, “Severe downslope windstorm calculations in two and three spatial dimensions using anelastic interactive grid nesting: A possible mechanism for gustiness. J. Atmos. Sci., 41, 329–350 (1984).

    Article  ADS  Google Scholar 

  7. M. Cullen, D. Salmond, and P.K. Smolarkiewicz, “Key numerical issues for future development of the ECMWF models”, Proc. ECMWF Workshop on Developments in numerical methods for very high resolution global models, 5–7 June 2000, Reading, UK, ECMWF, 183–206 (2000).

    Google Scholar 

  8. J.W. Deardorff, “Sub-grid-scale turbulence modelings”, Issues in Atmospheric and Oceanic Modeling, Part B. Weather Dynamics, Advances in Geophysics. Eds. B. Saltzman and S. Manabe, Academic Press, 337–343 (1985).

    Google Scholar 

  9. D. Drikakis, and P.K. Smolarkiewicz, “On spurious vortical structures”, J. Comput. Phys., 172, 309–325 (2001).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. D. Drikakis, L.G. Margolin, and P.K. Smolarkiewicz, “On “spurious” eddies”, Numerical Methods for Fluid Dynamics VII, Ed. M.J. Baines, Will Print, 289–296 (2001).

    Google Scholar 

  11. G.S. Dietachmayer, and K.K. Droegemeier, “Application of continuous dynamic grid adaptation techniques to meteorological modeling. Part 1: Basic formulation and accuracy”, Mon. Weather Rev., 120, 1675–1706 (1992).

    Article  ADS  Google Scholar 

  12. U. Frisch, Turbulence, Cambridge Univ. Press, 296 pp. (1995).

    Google Scholar 

  13. J.R. Elliott, and P.K. Smolarkiewicz, “Eddy resolving simulations of turbulent solar convection”, Proc. ECCOMAS computational fluid dynamics conference, 4–7 September 2001, Swansea, Wales, UK (2001).

    Google Scholar 

  14. M.S. Fox-Rabinovitz, G.L. Stenchikov, M.J. Suarez, L.L. Takacs, and R.C. Govindaraju, “A uniform-and variable-resolution stretched-grid GCM dynamical core with realistic orography. Mon. Weather Rev., 128, 1883–1898 (2000).

    Article  ADS  Google Scholar 

  15. T. Gal-Chen, and C.J. Somerville, “On the use of a coordinate transformation for the solution of the Navier-Stokes equations”, J. Comput. Phys., 17, 209–228 (1975).

    Article  MathSciNet  ADS  Google Scholar 

  16. M. Germano, U. Piomelli, P. Moin, and W. Cabot, “A Dynamic Subgrid-scale Eddy-Viscosity Model”, Phys. Fluids, A 3, 1760–1765 (1991).

    ADS  Google Scholar 

  17. I.M. Held, and M.J. Suarez, “A proposal for intercomparison of the dynamical cores of atmospheric general circulation models”, Bull. Amer. Meteor. Soc., 75, 1825–1830 (1994).

    Article  ADS  Google Scholar 

  18. J.R. Herring, and R.M. Kerr, “Development of enstrophy and spectra in numerical turbulence”, Phys. Fluids, A 5, 2792–2798 (1993).

    ADS  Google Scholar 

  19. J.P. Iselin, J.M. Prusa, and W.J. Gutowski, “Dynamic grid adaptation using the MPDATA scheme”, Mon. Weather Rev., in press (2001).

    Google Scholar 

  20. R.M. Kerr, “Evidence for a singularity of the three-dimensional, incompressible Euler equations”, Phys. Fluids, A 5, 1725–1746 (1993).

    Google Scholar 

  21. B. Kosović, “Subgrid-scale modeling for large-eddy simulation of high-Reynolds-number boundary layers”, J. Fluid Mech., 336, 151–182 (1997).

    Article  ADS  MATH  Google Scholar 

  22. M. Lesieur, and O. Metais, “New trends in LES of turbulence”, Annu. Rev. Fluid Mech., 28, 45–82 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  23. M. Lesieur, Turbulence in Fluids, Kluwer Academic Pub., Dordrecht, 515 pp. (1997).

    MATH  Google Scholar 

  24. D.K. Lilly, “The Representation of Small Scale Turbulence in a Numerical Experiment”, Proc. IBM Scientific Computing Symposium on Environmental Sciences, IBM, White Plains, NY. (1967).

    Google Scholar 

  25. D.K. Lilly, “A Proposed Modification of the Germano Subgrid-scale Closure Method”, Phys. Fluids, A 4, 633–635 (1992).

    Article  ADS  Google Scholar 

  26. P.F. Linden, J.M. Redondo, and D.L. Youngs, “Molecular mixing in Rayleigh-Taylor instability”, J. Fluid Mech., 265, 97–124 (1994).

    Article  ADS  Google Scholar 

  27. F.B. Lipps, and R.S. Hemler, “A scale analysis of deep moist convection and some related numerical calculations”, J. Atmos, Sci., 39, 2192–2210 (1982).

    Article  ADS  Google Scholar 

  28. L.G. Margolin, and W.J. Rider, “A rationale for implicit turbulence modeling”, Proc. ECCOMAS computational fluid dynamics conference, 4–7 September 2001, Swansea, Wales, UK (2001).

    Google Scholar 

  29. L.G. Margolin, P.K. Smolarkiewicz, and Z. Sorbjan, “Large-eddy simulations of convective boundary layers using nonoscillatory differencing”, Physica D, 133, 390–397 (1999).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. P.J. Mason, “Large-eddy simulation: A critical review of the technique”, Q.J.R. Met. Soc., 120, 1–35 (1994).

    Article  ADS  Google Scholar 

  31. P. Moin, and A. G. Kravchenko, “Numerical issues in large eddy simulations of turbulent flows”, Numerical Methods for Fluid Dynamics VI, Ed. M. J. Baines, Will Print, Oxford, 123–136 (1998).

    Google Scholar 

  32. A. Muschinski, “A similarity theory of locally homogeneous and isotropic turbulence generated by a Smagorinsky-type LES”, J. Fluid Mech., 325, 239–260 (1996).

    Article  MATH  ADS  Google Scholar 

  33. F.T.M. Nieuwstadt, “Direct and large-eddy simulation of free convection”, Proc. 9th Intl. Heat Transfer Conf., Jerusalem, vol. 1, Amer. Soc. Mech. Engr., 37–47 (1990).

    Google Scholar 

  34. E.S. Oran, and J.P. Boris, “Computing Turbulent Shear Flows—A Convenient Conspiracy”, Computers in Physics, 7, 523–533 (1993)

    Google Scholar 

  35. S.A. Orszag, and I. Staroselsky, “CFD: Progress and problems”, Computer Physics Communications, 127, 165–171 (2000).

    Article  ADS  MATH  Google Scholar 

  36. J.M. Ottino, The Kinematics Of Mixing: Stretching, Chaos, And Transport, Cambridge University Press, 364 pp. (1989).

    Google Scholar 

  37. D.H. Porter, A. Pouquet, and P.R. Woodward, “Kolmogorov-like spectra in decaying three-dimensional supersonic flows”, Phys. Fluids, 6, 2133–2142 (1994).

    Article  ADS  MATH  Google Scholar 

  38. J.M. Prusa, P.K. Smolarkiewicz, and R.R. Garcia, “On the propagation and breaking at high altitudes of gravity waves excited by tropospheric forcing”, J. Atmos. Sci., 53, 2186–2216 (1996).

    Article  ADS  Google Scholar 

  39. J.M. Prusa, R.R. Garcia, and P.K. Smolarkiewicz., “Three-Dimensional Evolution of Gravity Wave Breaking in the Mesosphere”, Preprints 11th Conf. Atmos. Ocean. Fluid Dynamics, Tacoma, WA, USA, June 23–27, American Meteorological Society, J3–J4 (1997)

    Google Scholar 

  40. J.M. Prusa, P.K. Smolarkiewicz, and A.A. Wyszogrodzki, “Parallel computations of gravity wave turbulence in the Earth’s atmosphere”, SIAM News, 32,1:10–12 (1999).

    Google Scholar 

  41. J.M. Prusa, P.K. Smolarkiewicz, and A.A. Wyszogrodzki, “Simulations of gravity wave induced turbulence using 512 PE CRAY T3E”, Int. J. Applied Math. Comp. Science, in press (2001).

    Google Scholar 

  42. P.J. Roache, Computational Fluid Dynamics., Hermosa Publishers, Albuquerque, 446 pp. (1972).

    MATH  Google Scholar 

  43. H. Schmidt, and U. Schumann, “Coherent structure of the convective boundary layer derived from large-eddy simulation”, J. Fluid Mech., 200, 511–562 (1989).

    Article  ADS  MATH  Google Scholar 

  44. J. Smagorinsky, J., “Some historical remarks on the use of nonlinear viscosities”, Large Eddy Simulation of Complex Engineering and Geophysical Flows, Eds. B. Galperin and S. A. Orszag, Cambridge University Press, 3–36 (1993).

    Google Scholar 

  45. P.K. Smolarkiewicz, “A fully multidimensional positive definite advection transport algorithm with small implicit diffusion”, J. Comput. Phys., 54, 325–362 (1984).

    Article  ADS  Google Scholar 

  46. P.K. Smolarkiewicz, and T. L. Clark, “The multidimensional positive definite advection transport algorithm: Further development and applications”, J. Comput. Phys., 67, 396–438 (1986).

    Article  ADS  MATH  Google Scholar 

  47. P.K. Smolarkiewicz, and G.A. Grell, “A class of monotone interpolation schemes”, J. Comput. Phys., 101, 431–440 (1992).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  48. P.K, Smolarkiewicz, and J.A. Pudykiewicz, “A class of semi-Lagrangian approximations for fluids”, J. Atmos. Sci., 49, 2082–2096 (1992).

    Article  ADS  Google Scholar 

  49. P.K, Smolarkiewicz, and L. G. Margolin, “On forward-in-time differencing for fluids: Extension to a curvilinear framework”, Mon. Weather Rev., 121, 1847–1859 (1993).

    Article  ADS  Google Scholar 

  50. P.K. Smolarkiewicz, and L.G. Margolin, “Variational solver for elliptic problems in atmospheric flows”, Appl. Math. & Comp. Sci., 4, 527–551 (1994).

    MathSciNet  MATH  Google Scholar 

  51. P.K. Smolarkiewicz, and L.G. Margolin, “On forward-in-time differencing for fluids: An Eulerian/semi-Lagrangian nonhydrostatic model for stratified flows”, Atmos. Ocean Special, 35, 127–152 (1997).

    Google Scholar 

  52. P.K. Smolarkiewicz, and L.G. Margolin, “MPDATA: A finite-difference solver for geophysical flows”, J. Comput. Phys., 140, 459–480 (1998).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  53. L.G. Margolin, V. Grubišić, L.G. Margolin, and A.A. Wyszogrodzki, “Forward-in-time differencing for fluids: Nonhydrostatic modeling of fluid motions on a sphere” Proc. 1998 Seminar on Recent Developments in Numerical Methods for Atmospheric Modeling, Reading, UK, ECMWF, 21–43 (1999).

    Google Scholar 

  54. P.K. Smolarkiewicz, L.G. Margolin, and A.A. Wyszogrodzki, “A class of nonhydrostatic global models”, J. Atmos. Sci., 58, 349–364 (2001).

    Article  ADS  Google Scholar 

  55. P.K. Smolarkiewicz, and J.M. Prusa, “VLES modeling of geophysical fluids with nonoscillatory forward-in-time schemes,” Proc. ECCOMAS computational fluid dynamics conference, 4–7 September 2001, Swansea, Wales, UK (2001).

    Google Scholar 

  56. G. Strang, “On the construction and comparison of difference schemes, SIAM J. Numer. Anal., 5, 506–517 (1968).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  57. J.F. Thompson, F.C. Thames, and C.W. Mastin, “Automatic Numerical Generation of body-Fitted Curvilinear Coordinate System for Field Containing Any Number of Arbitrary Two-Dimensional Bodies”, J. Comput. Phys., 15, 299–319 (1974).

    Article  ADS  Google Scholar 

  58. J. Thuburn, “Dissipation and Cascades to Small Scales in Numerical Models Using a Shape-Preserving Advection Scheme”, Mon. Weather Rev., 123, 1888–1903 (1995).

    Article  ADS  Google Scholar 

  59. C.J. Tremback, J. Powell, W.R. Cotton, and R.A. Pielke, “The forward-in-time upstream advection scheme: Extension to higher orders”, Mon. Weather Rev., 115, 540–555 (1987).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Smolarkiewicz, P.K., Prusa, J.M. (2002). Forward-in-time Differencing for Fluids: Simulation of Geophysical Turbulence. In: Drikakis, D., Geurts, B. (eds) Turbulent Flow Computation. Fluid Mechanics and Its Applications, vol 66. Springer, Dordrecht. https://doi.org/10.1007/0-306-48421-8_8

Download citation

  • DOI: https://doi.org/10.1007/0-306-48421-8_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0523-7

  • Online ISBN: 978-0-306-48421-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics