Skip to main content

Alpha-modeling Strategy for LES of Turbulent Mixing

  • Chapter
Turbulent Flow Computation

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 66))

Abstract

The α-modeling strategy is followed to derive a new subgrid parameterization of the turbulent stress tensor in large-eddy simulation (LES). The LES-α modeling yields an explicitly filtered subgrid parameterization which contains the filtered nonlinear gradient model as well as a model which represents Leray-regularization. The LES-α model is compared with similarity and eddy-viscosity models that also use the dynamic procedure. Numerical simulations of a turbulent mixing layer are performed using both a second order, and a fourth order accurate finite volume discretization. The Leray model emerges as the most accurate, robust and computationally efficient among the three LES-α subgrid parameterizations for the turbulent mixing layer. The evolution of the resolved kinetic energy is analyzed and the various subgrid-model contributions to it are identified. By comparing LES-α at different subgrid resolutions, an impression of finite volume discretization error dynamics is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Spalart, P.R.: 1988. Direct simulation of a turbulent boundary layer up to R0=1410. J. Fluid Mech. 187, 61.

    Article  MATH  ADS  Google Scholar 

  2. Rogallo, R.S., Moin, P.: 1984. Numerical simulation of turbulent flows. Ann. Rev. Fluid Mech. 16, 99.

    Article  ADS  Google Scholar 

  3. Lesieur, M.: 1990. Turbulence influids. Kluwer Academic Publishers., Dordrecht.

    Google Scholar 

  4. Meneveau, C., Katz, J.: 2000. Scale-invariance and turbulence models for large-eddy simulation. Ann. Rev. Fluid Mech. 32, 1.

    Article  MathSciNet  ADS  Google Scholar 

  5. Germano, M.: 1992. Turbulence: the filtering approach. J. Fluid Mech. 238, 325.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  6. Geurts B.J.: 1999 Balancing errors in LES. Proceedings Direct and Large-Eddy simulation III: Cambridge. Eds: Sandham N.D., Voke P.R., Kleiser L., Kluwer Academic Publishers, 1.

    Google Scholar 

  7. Vreman A.W., Geurts B.J., Kuerten J.G.M.: 1997. Large-eddy simulation of the turbulent mixing layer, J. Fluid Mech. 339, 357.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Vreman A.W., Geurts B.J., Kuerten J.G.M.: 1994. Realizability conditions for the turbulent stress tensor in large eddy simulation. J. Fluid Mech. 278, 351.

    Article  ADS  MATH  Google Scholar 

  9. Ghosal, S.: 1999. Mathematical and physical constraints on large-eddy simulation of turbulence. AIAA J. 37, 425.

    Article  ADS  Google Scholar 

  10. Holm, D.D., Marsden, J.E., Ratiu, T.S.: 1998. Euler-Poincaré equations and semidirect products with applications to continuum theories. Adv. in Math 137, 1.

    Article  MathSciNet  MATH  Google Scholar 

  11. Holm, D.D., Marsden, J.E., Ratiu, T.S.: 1998. Euler-Poincaré models of ideal fluids with nonlinear dispersion. Phys. Rev. Lett. 80, 4173.

    Article  ADS  Google Scholar 

  12. Camassa, R., Holm, D.D.: 1993. An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Chen, S.Y., Foias, C., Holm, D.D., Olson, E.J., Titi, E.S., Wynne, S.: 1998. The Camassa-Holm equations as a closure model for turbulent channel flow. Phys. Rev. Lett. 81, 5338.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Chen, S.Y., Foias, C., Holm, D.D., Olson, E.J., Titi, E.S., Wynne, S.: 1999. A connection between Camassa-Holm equations and turbulent flows in channels and pipes. Phys. Fluids 11, 2343.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Chen, S.Y., Foias, C., Holm, D.D., Olson, E.J., Titi, E.S., Wynne, S.: 1999. The Camassa-Holm equations and turbulence. Physica D 133, 49.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Chen, S.Y., Holm, D.D., Margolin, L.G., Zhang, R.: 1999. Direct numerical simulations of the Navier-Stokes alpha model, Physica D 133, 66.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Holm, D.D.: 1999. Fluctuation effects on 3D Lagrangian mean and Eulerian mean fluid motion. Physica D 133, 215.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Marsden, J.E., Shkoller, S.: 2001. The anisotropic Lagrangian averaged Navier-Stokes and Euler equations. Arch. Ration. Mech. Analysis. (In the press.)

    Google Scholar 

  19. Shkoller, S.: 1998. Geometry and curvature of diffeomorphism groups with H 1 metric and mean hydrodynamics. J. Func. Anal. 160, 337.

    Article  MathSciNet  MATH  Google Scholar 

  20. Marsden, J.E., Ratiu, T.S., Shkoller, S.: 2000. The geometry and analysis of the averaged Euler equations and a new diffeomorphism group. Geom. Funct. Anal. 10, 582.

    Article  MathSciNet  MATH  Google Scholar 

  21. Foias, C., Holm, D.D., Titi, E.S.: 2002. The three dimensional viscous Camassa-Holm equations, and their relation to the Navier-Stokes equations and turbulence theory. J. Diff. Eqs. to appear.

    Google Scholar 

  22. Marsden, J.E., Shkoller, S.: 2001. Global well-posedness for the Lagrangian averaged Navier-Stokes (LANS-α) equations on bounded domains. Phil. Trans. R. Soc. Lond. A 359, 1449.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Foias, C., Holm, D.D., Titi, E.S.: 2001. The Navier-Stokes-alpha model of fluid turbulence. Physica D 152 505.

    Article  MathSciNet  ADS  Google Scholar 

  24. Domaradzki, J.A., Holm, D.D.: 2001. Navier-Stokes-alpha model: LES equations with nonlinear dispersion. Modern simulation strategies for turbulent flow. Edwards Publishing, Ed. B.J. Geurts. 107.

    Google Scholar 

  25. Mohseni, K., Kosovic, B., Marsden, J.E., Shkoller, S., Carati, D., Wray, A., Rogallo, R.: 2000. Numerical simulations of homogeneous turbulence using the Lagrangian averaged Navier-Stokes equations. Proc. of the 2000 Summer Program, 271. Stanford, CA: NASA Ames/Stanford University.

    Google Scholar 

  26. Holm, D.D., Kerr, R.: 2001. Transient vortex events in the initial value problem for turbulence. In preparation.

    Google Scholar 

  27. Holm, D.D.: 1999. Alpha models for 3D Eulerian mean fluid circulation. Nuovo Cimento C 22, 857.

    ADS  Google Scholar 

  28. Bardina, J., Ferziger, J.H., Reynolds, W.C.: 1983. Improved turbulence models based on large eddy simulations of homogeneous incompressible turbulence. Stanford University, Report TF-19.

    Google Scholar 

  29. Leonard, A.: 1974. Energy cascade in large-eddy simulations of turbulent fluid flows. Adv. Geophys. 18, 237.

    Article  ADS  Google Scholar 

  30. Clark, R.A., Ferziger, J.H., Reynolds, W.C.: 1979. Evaluation of subgrid-scale models using an accurately simulated turbulent flow. J. Fluid Mech. 91, 1.

    Article  ADS  MATH  Google Scholar 

  31. Vreman A.W., Geurts B.J., Kuerten J.G.M.: 1996. Large eddy simulation of the temporal mixing layer using the Clark model TCFD 8, 309.

    ADS  MATH  Google Scholar 

  32. Winckelmans, G.S., Jeanmart, H., Wray, A.A., Carati, D., Geurts, B.J.: 2001. Tensor-diffusivity mixed model: balancing reconstruction and truncation. Modern simulation strategies for turbulent flow. Edwards Publishing, Ed. B.J. Geurts. 85.

    Google Scholar 

  33. Leray, J.: 1934. Sur le mouvement ďun liquide visqueux emplissant ľespace tActa Math. 63, 193. Reviewed, e.g., in P. Constantin, C. Foias, B. Nicolaenko and R. Temam, Integral manifolds and inertial manifolds for dissipative partial differential equations. Applied Mathematical Sciences, 70, (Springer-Verlag, New York-Berlin, 1989).

    Google Scholar 

  34. Vreman A.W., Geurts B.J., Kuerten J.G.M.: 1995. A priori tests of Large Eddy Simulation of the compressible plane mixing layer. J. Eng. Math. 29, 299

    Article  MathSciNet  MATH  Google Scholar 

  35. de Bruin, I.C.C.: 2001. Direct and large-eddy simulation of the spatial turbulent mixing layer. Ph.D. Thesis, Twente University Press.

    Google Scholar 

  36. Germano, M., Piomelli U., Moin P., Cabot W.H.: 1991. A dynamic subgrid-scale eddy viscosity model. Phys. of Fluids 3, 1760

    Article  ADS  MATH  Google Scholar 

  37. Geurts, B.J., Holm, D.D.: 2001. Leray simulation of turbulent flow. In preparation.

    Google Scholar 

  38. Ghosal, S.: 1996. An analysis of numerical errors in large-eddy simulations of turbulence. J. Comp. Phys. 125, 187.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  39. Vreman A.W., Geurts B.J., Kuerten J.G.M.: 1996. Comparison of numerical schemes in Large Eddy Simulation of the temporal mixing layer. Int. J. Num. Meth. in Fluids 22, 297.

    Article  MATH  ADS  Google Scholar 

  40. Vreman A.W., Geurts B.J., Kuerten J.G.M.: 1994. Discretization error dominance over subgrid-terms in large eddy simulations of compressible shear layers. Comm. Num. Meth. Eng. Math. 10, 785.

    Article  MATH  Google Scholar 

  41. Geurts, B.J., Fröhlich, J.: 2001. Numerical effects contaminating LES: a mixed story. Modern simulation strategies for turbulent flow. Edwards Publishing, Ed. B.J. Geurts. 309.

    Google Scholar 

  42. Geurts B.J., Vreman A.W., Kuerten J.G.M.: 1994. Comparison of DNS and LES of transitional and turbulent compressible flow: flat plate and mixing layer. Proceedings 74th Fluid Dynamics Panel and Symposium on Application of DNS and LES to transition and turbulence, Crete, AGARD Conf. Proceedings 551:51

    Google Scholar 

  43. Ghosal, S., Moin, P.: 1995. The basic equations for large-eddy simulation of turbulent flows in complex geometry. J. Comp. Phys. 286, 229.

    MathSciNet  MATH  Google Scholar 

  44. Du Vachat, R.: 1977. Realizability in equalities in turbulent flows. Phys. Fluids 20, 551.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  45. Schumann, U.: 1977. Realizability of Reynolds-stress turbulence models. Phys. Fluids 20, 721.

    Article  MATH  ADS  Google Scholar 

  46. Ortega, J.M.: 1987. Matrix Theory. Plenum Press. New York

    MATH  Google Scholar 

  47. Ghosal, S., Lund, T.S., Moin, P., Akselvoll, K.: 1995. A dynamic localization model for large-eddy simulation of turbulent flows. J. Fluid Mech. 286, 229.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. Lilly, D.K.: 1992. A proposed modification of the Germano subgrid-scale closure method. Phys. of Fluids A 4, 633.

    Article  ADS  Google Scholar 

  49. Geurts, B.J.: 1997. Inverse modeling for large-eddy simulation. Phys. of Fluids 9, 3585.

    Article  ADS  Google Scholar 

  50. Kuerten J.G.M., Geurts B.J., Vreman, A.W., Germano, M.: 1999. Dynamic inverse modeling and its testing in large-eddy simulations of the mixing layer. Phys. Fluids 11, 3778.

    Article  ADS  MATH  Google Scholar 

  51. Horiuti, K.: Constraints on the subgrid-scale models in a frame of reference undergoing rotation. J. Fluid Mech., submitted.

    Google Scholar 

  52. Germano, M.: 1986. Differential filters for the large eddy numerical simulation of turbulent flows. Phys Fluids 29, 1755.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  53. Smagorinsky, J.: 1963. General circulation experiments with the primitive equations. Mon. Weather Rev. 91, 99.

    Article  ADS  Google Scholar 

  54. Stolz, S., Adams, N.A.: 1999. An approximate deconvolution procedure for large-eddy simulation. Phys. of Fluids, 11, 1699.

    Article  ADS  MATH  Google Scholar 

  55. Domaradzki, J.A., Saiki, E.M.: 1997. A subgrid-scale model based on the estimation of unresolved scales of turbulence. Phys. of Fluids 9, 1.

    Article  Google Scholar 

  56. Wasistho, B., Geurts, B.J., Kuerten, J.G.M.: 1997. Numerical simulation of separated boundary layer flow. J. Engg. Math 32, 179.

    MathSciNet  Google Scholar 

  57. Chatelin, F.: 1993. Eigen values of matrices. John Wiley & Sons. Chichester.

    Google Scholar 

  58. Jameson, A.: 1983. Transonic flow calculations. MAE-Report 1651, Princeton

    Google Scholar 

  59. Geurts, B.J., Kuerten, J.G.M.: 1993. Numerical aspects of a block-structured flow solver. J. Engg. Math. 27, 293.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Geurts, B.J., Holm, D.D. (2002). Alpha-modeling Strategy for LES of Turbulent Mixing. In: Drikakis, D., Geurts, B. (eds) Turbulent Flow Computation. Fluid Mechanics and Its Applications, vol 66. Springer, Dordrecht. https://doi.org/10.1007/0-306-48421-8_7

Download citation

  • DOI: https://doi.org/10.1007/0-306-48421-8_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0523-7

  • Online ISBN: 978-0-306-48421-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics