Skip to main content

Analysis and Control of Errors in the Numerical Simulation of Turbulence

  • Chapter
Turbulent Flow Computation

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 66))

Abstract

Turbulent flows are characterised by a continuum of length and time scales, a feature that introduces some unique problems in relation to the analysis and control of errors in numerical simulations of turbulent flows. In direct numerical simulation (DNS) one attempts to fully resolve the flow field. The primary sources of error in DNS are the aliasing error, which arises due to the evaluation of the nonlinear term on a discrete grid in physical space, and, the truncation error, due to the discretization of the derivative operator. In addition there are the time-stepping errors on account of the temporal discretization. In Large Eddy Simulation (LES) only the large scale flow is computed whereas the collective effect of the small scales are modeled. In that case, in addition to the above three types of errors, there are commutation errors arising out of the averaging process used to derive the LES equations and sub-grid modeling errors that arise because in the absence of a systematic method, the subgrid stress is evaluated using an ad hoc closure model. Methods for analyzing and quantifying these errors in turbulence simulations are discussed. In some instances the analysis points to suitable methods of error control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Vichnevetsky and J. Bowles, Fourier analysis of numerical approximations of hyperbolic equations,SIAM, Philadelphia, (1982).

    MATH  Google Scholar 

  2. S. Lele, “Compact Finite Difference Schemes with Spectral Like Resolution,” J. Comp. Phys. 103, 16 (1992).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  3. C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang “Spectral Methods in Fluid Dynamics,” Berlin: Springer (1988).

    MATH  Google Scholar 

  4. J.W. Cooley and J.W. Tukey, “An algorithm for the machine calculation of complex Fourier Series,” Math. Comput. 19, 297 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  5. N.A. Phillips “An example of nonlinear computational instability,” In The Atmosphere and Sea in Motion ed. B. Bolin, Rockefeller Inst. Press, New York (1959).

    Google Scholar 

  6. R. Rogallo, NASA Tech. Memo. TM81315 (1981).

    Google Scholar 

  7. G.A. Blaisdell, E.T. Spyropoulos and J.H. Qin “The effect of the formulation of nonlinear terms on aliasing errors in spectral methods” Appl. Numer. Math, 20, 1 (1996).

    Article  MathSciNet  Google Scholar 

  8. J.A. Domaradzki, R.W. Metcalfe, R.S. Rogallo and J.J. Riley “Analysis of subgrid-scale eddy viscosity with use of results from direct numerical simulations,” Phy. Rev. Lett. 58(6), 547 (1987).

    Article  ADS  Google Scholar 

  9. R.M. Kerr, J.A. Domaradzki, and G. Barbier “Small-scale properties of nonlinear interactions and subgrid-scale energy transfer in isotropic turbulence,” Phys. Fluids 8, 197 (1996).

    Article  ADS  MATH  Google Scholar 

  10. S. Cerutti and C. Meneveau “Statistics of filtered velocity in grid and wake turbulence,” Phys. Fluids 12(5), 1143 (2000).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. C. Meneveau and J. Katz “Conditional subgrid force and dissipation in locally isotropic and rapidly strained turbulence,” Phys. Fluids 11(8), 2317 (1999).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. A.A. Aldama “Filtering Techniques for Turbulent Flow Simulation” In Lecture Notes in Engineering, 56, Springer-Verlag, New York/Berlin (1990).

    Google Scholar 

  13. J. Kim, P. Moin and R. Moser “Turbulence statistics in fully-developed channel flow at low Reynolds number” J. Fluid Mech., 177, 133 (1987).

    Article  ADS  MATH  Google Scholar 

  14. S. Ghosal and P. Moin, “The Basic Equations for the Large Eddy Simulation of Turbulent Flows in Complex Geometry,” J. Comp. Phys. 118, 24 (1995).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. H. van der Ven, “A Family of Large Eddy Simulation (LES) filters with nonuniform filter widths,” Phys. Fluids 7(5), 1171 (1995).

    Article  MATH  ADS  Google Scholar 

  16. O.V. Vasilyev, T.S. Lund and P. Moin “A General Class of Commutative Filters for LES in Complex Geometries”, J. Comp. Phys. 146(1), 82 (1998).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. T.S. Lund “Discrete filters for LES” CTR Annu. Res. Briefs pg.83 (1997).

    Google Scholar 

  18. H. Lomax, “Finite difference methods for fluid dynamics” Lecture notes (Stanford University).

    Google Scholar 

  19. W. Gear, Numerical initial value problems in ordinary differential equations, Prentice-Hall, New Jersey, (1971).

    MATH  Google Scholar 

  20. G. Helmberg Introduction to Spectral Theory in Hilbert Spaces North Holland, Amsterdam-London (1969).

    Google Scholar 

  21. R.V. Churchill Fourier Series and Boundary Value Problems McGraw-Hill, New York (1963).

    MATH  Google Scholar 

  22. S. Ghosal “An analysis of numerical errors in large eddy simulations of turbulence,” J. Comp. Phys. 125, 187 (1996).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  23. W. Jones and N. March, Theoretical solid state physics, Vol.1: Perfect lattices in equilibrium, Wiley-Interscience, London, (1973).

    Google Scholar 

  24. M. Lesieur, Turbulence in fluids, Kluwer Academic Publishers, Dordrecht, The Netherlands, (1987).

    MATH  Google Scholar 

  25. A. Monin and A. Yaglom, Statistical Fluid Mechanics, Vol. 2 The MIT Press, Cambridge, (1979).

    Google Scholar 

  26. G.K. Batchelor, “Pressure fluctuations in isotropic turbulence”, Proc. Camb. Phil. Soc. 47, 359 (1951).

    Article  MathSciNet  MATH  Google Scholar 

  27. G. Batchelor, The theory of homogeneous turbulence, Cambridge Univ. Press, Cambridge, England, (1953).

    MATH  Google Scholar 

  28. M. Germano, U, Piomelli, P. Moin and W.H. Cabot “A dynamic subgrid-scale eddy viscosity model,” Phys.Fluids A 3, 1760 (1991).

    Article  ADS  MATH  Google Scholar 

  29. S. Ghosal, T.S. Lund, P. Moin and K. Akselvoll “A dynamic localization model for the large eddy simulation of turbulent flow,” J. Fluid Mech. 286, 229 (1995).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. C. Meneveau, T.S. Lund and W.H. Cabot “A lagrangian dynamic subgrid-scale model of turbulence,” J. Fluid Mech. 319, 353 (1996).

    Article  ADS  MATH  Google Scholar 

  31. O.V. Vasilyev, T.S. Lund and P. Moin “A general class of commutative filters for LES in complex geometries,” J. Comp. Phys. 146(1), 82 (1998).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. M. Lesieur and O. Metais “New trends in large-eddy simulations of turbulence” Annu. Rev. Fluid Mech. 28, 45 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  33. U. Piomelli “Large-eddy simulation: achievements and challenges” Progress in Aerospace Sciences 35, 335 (1999).

    Article  ADS  Google Scholar 

  34. B. Vreman, B. Geurts and H. Kuerten “Discretization error dominance over subgrid terms in large eddy simulation of compressible shear layers in 2D” Comm. in Num. methods Eng. 10, 785 (1994).

    Article  MATH  Google Scholar 

  35. B. Vreman, B. Geurts and H. Kuerten “A priori tests of large eddy simulation of the compressible plane mixing layer” J. Eng. Math. 29, 299 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  36. B. Vreman, B. Geurts and H. Kuerten “Comparison of numerical schemes in large eddy simulation of the temporal mixing layer” Int. J. Num. methods in Fluids 29, 299 (1996).

    MathSciNet  Google Scholar 

  37. A.G. Kravchenko and P. Moin “On the effect of numerical errors in large eddy simulation of turbulent flows” J. Comp. Phys. 131, 310 (1997).

    Article  ADS  MATH  Google Scholar 

  38. B. Kosović D.I. Pullin and R. Samtaney “Subgrid-scale modeling for Large-eddy simulations of compressible turbulence” (preprint) (2001).

    Google Scholar 

  39. D.I. Pullin (private communication).

    Google Scholar 

  40. T.J.R. Hughes, L. Mazzei and A.A. Oberai “The multiscale formulation of large eddy simulation: Decay of homogeneous isotropic turbulence” Phys. Fluids 13(2), 505 (2001).

    Article  ADS  Google Scholar 

  41. T.J.R. Hughes, A.A. Oberai and L. Mazzei “Large eddy simulation of turbulent channel flows by the variational multiscale method” Phys. Fluids 13(6), 1784 (2001).

    Article  ADS  Google Scholar 

  42. D. Drikakis, O.P. Iliev and D.P. Vassileva “A Nonlinear Multigrid Method for the Three-Dimensional Incompressible Navier-Stokes Equations” J. Comp. Phys. 146, 301 (1998).

    Article  ADS  MATH  Google Scholar 

  43. J.A. Langford “Toward ideal large eddy simulation” Thesis, Univ. Illinois at Urbana Champaign (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Ghosal, S. (2002). Analysis and Control of Errors in the Numerical Simulation of Turbulence. In: Drikakis, D., Geurts, B. (eds) Turbulent Flow Computation. Fluid Mechanics and Its Applications, vol 66. Springer, Dordrecht. https://doi.org/10.1007/0-306-48421-8_4

Download citation

  • DOI: https://doi.org/10.1007/0-306-48421-8_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0523-7

  • Online ISBN: 978-0-306-48421-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics