Skip to main content

Examples of Contemporary CFD Simulations

  • Chapter
Turbulent Flow Computation

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 66))

Abstract

This chapter is intended to convince the reader, through a number of relevant and diverse examples, that modern CFD with turbulence modelling is a practical tool for fast and accurate prediction of flow problems of engineering interest. A general introduction to modern CFD and a preface to the general-purpose CFD solver, CFD++, are followed by a substantial number of flow examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chakravarthy, S., Peroomian, O. and Sekar, B. (1996) “Some Internal Flow Applications of a Unified-Grid CFD Methodology,” AIAA Paper No. 96-2926.

    Google Scholar 

  2. Peroomian, O., Chakravarthy, S. and Goldberg, U. (1997) “A ‘gridtransparent’ Methodology for CFD,” AIAA Paper No. 97-0724.

    Google Scholar 

  3. Goldberg, U., Peroomian, O. and Chakravarthy, S. (1998) “A Wall-Distance-Free k-∈ Model With Enhanced Near-Wall Treatment,” ASME J. Fluids Eng., 120 pp. 457–462.

    Article  Google Scholar 

  4. Goldberg, U., Batten, P., Palaniswamy, S., Chakravarthy, S. and Peroomian, O. (2000) “Hypersonic Flow Predictions Using Linear and Nonlinear Turbulence Closures,” AIAA J. of Aircraft, 37 pp. 671–675.

    Article  Google Scholar 

  5. Goldberg, U. and Batten, P. (2001) “Heat Transfer Predictions Using a Dual-Dissipation k-∈ Turbulence Closure,” AIAA J. Thermophysics and Heat Transfer, 15 No. 2 pp. 197–204.

    Article  Google Scholar 

  6. Goldberg, U. (2001) “Hypersonic Flow Heat Transfer Predictions Using Single Equation Turbulence Models,” ASME J. Heat Transfer, 123 pp. 65–69.

    Article  Google Scholar 

  7. Palaniswamy, S., Goldberg, U., Peroomian, O. and Chakravarthy, S. (2001) “Predictions of Axial and Traverse Injection into Supersonic Flow,” Flow, Turbulence and Combustion, 66 pp. 37–55.

    Article  MATH  Google Scholar 

  8. Batten, P., Goldberg, U. and Chakravarthy, S. (2000) “Sub-grid Turbulence Modeling for Unsteady Flow with Acoustic Resonance,” AIAA Paper 00-0473.

    Google Scholar 

  9. Harten, A. (1983) “High Resolution Schemes for Hyperbolic Conservation Laws.” JCP, 49.

    Google Scholar 

  10. Harten, A. (1991) “Recent Developments in Shock Capturing Schemes,” NASA CR 187502.

    Google Scholar 

  11. Godunov, S.K. (1959) “A Difference Method for the Numerical Calculation of Discontinuous Solutions of Hydrodynamic Equations,” Mat. Sbornik, 47

    Google Scholar 

  12. Steger, J.L. and Warming, R.F. (1981) “Flux Vector Splitting of the Inviscid Gasdynamic Equations with Applications to Finite-Difference Methods,” JCP, 40 pp. 263–293.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. van Leer, B., Thomas, J.L., Roe, P.L. and Newsome, R.W. (1987) “A Comparison of Numerical Flux Formulas for the Euler and Navier-Stokes Equations,” AIAA Paper 87-1184.

    Google Scholar 

  14. Osher, S. and Solomon, F. (1981) “Upwind Schemes for Hyperbolic Systems of Conservation Laws,” Math. Comp., 38 pp. 339–377.

    Article  MathSciNet  Google Scholar 

  15. Roe, P.L. (1981) “Approximate Riemann Solvers, Parameter Vectors and Difference Schemes,” JCP, 43 pp. 357–372.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. Einfeldt, B., Munz, C.D., Roe, P.L. and Sjogreen, B. (1991) “On Godunov-Type Methods Near Low Densities,” JCP, 92 pp. 273–295.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Toro, E.F., Spruce, M. and Speares, W. (1994) “Restoration of the Contact Surface in the HLL Riemann Solver,” Shock Waves, 4 Springer-Verlag, pp. 25–34.

    Article  MATH  ADS  Google Scholar 

  18. Batten, P., Clarke, N., Lambert, C. and Causon, D.M. (1997) “On the Choice of Wave Speeds for the HLLC Riemann Solver,” SIAM J. Sci. & Stat. Comp., 18(6) pp. 1553–1570.

    Article  MathSciNet  MATH  Google Scholar 

  19. Moschetta, J.-M. and Pullin, D. (1997) “A Robust Low Diffusive Kinetic Scheme for the Navier-Stokes/Euler Equations,” JCP, 133 pp. 193–204.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  20. Liou, M.-S. and Steffen, C.J. Jr. (1993) “A New Flux Splitting Scheme,” JCP, 107 pp. 23–39.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Harten, A., Lax, P.D. and van Leer, B. (1983) “On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws,” SIAM Review, 25 No. 1, pp. 35–61.

    Article  MathSciNet  MATH  Google Scholar 

  22. Allmaras, S.R. (1992) “Contamination of Laminar Boundary Layers by Artificial Dissipation in Navier-Stokes Solutions,” Proc. ICFD Conf., University of Reading.

    Google Scholar 

  23. McNeil, C.Y. (1996) “The Effectof Numerical Dissipation on High Reynolds Number Turbulent Flow Solutions,” AIAA Paper 96-0891, 34th Aerospace Sciences Meeting, Reno, Nevada.

    Google Scholar 

  24. Perthame, B. and Shu, C.-W. (1996) “On Positivity Preserving Finite Volume Schemes for the Euler Equations,” Numer. Math., 73 pp. 119–130.

    Article  MathSciNet  MATH  Google Scholar 

  25. Peroomian, O., Chakravarthy, S., Palaniswamy, S. and Goldberg, U. (1998) “Convergence Acceleration for Unified-Grid Formulation Using Preconditioned Implicit Relaxation,” AIAA Paper No. 98-0116.

    Google Scholar 

  26. Batten, P., Leschziner, M.A. and Goldberg, U.C. (1997) “Average-State Jacobians and Implicit Methods for Compressible Viscous and Turbulent Flows,” Journal of Computational Physics, 137 pp. 38–78.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  27. “A Selection of Experimental Test Cases for the Validation of CFD Codes,” AGARD-AR-303 2, 1994.

    Google Scholar 

  28. McDaniel, J., Fletcher, D., Hartfield, R. and Hollo, S. (1991) “Staged Transverse Injection Into Mach 2 Flow Behind a Rearward-Facing Step: A 3-D Compressible Test Case for Hypersonic Combustor Code Validation,” AIAA Paper No. 91-5071.

    Google Scholar 

  29. Kussoy, M.I., Horstman, K.C., and Horstman, C.C. (1993) “Hypersonic Crossing Shock-Wave/Turbulent-Boundary-Layer Interactions,” AIAA Journal, 31 pp. 2197–2203.

    Article  ADS  Google Scholar 

  30. White, F.M. (1974) Viscous Fluid Flow, 1st ed., McGraw-Hill Book Company.

    Google Scholar 

  31. Launder, B.E. (1988) “On the Computation of Convective Heat Transfer in Complex Turbulent Flows,” ASME Journal of Heat Transfer, 110 pp. 1112–1128.

    Article  ADS  Google Scholar 

  32. Nielsen, P.V., Restivo, A. and Whitelaw, J.H. (1978) “The Velocity Characteristics of Ventilated Room,” ASME J. Fluids Eng., 100 pp. 291–298.

    Article  Google Scholar 

  33. Amitay, M., Kibens, V., Parekh, D. and Glezer, A. (1999) “The Dynamics of Flow Reattachment over a Thick Airfoil Controlled by Synthetic Jet Actuators,” AIAA Paper 99-1001.

    Google Scholar 

  34. Heller, H.H., Holmes, D.G. and Covert, E.E (1971) “Flow Induced Pressure Oscillations in Shallow Cavities,” Journal of Sound and Vibration, 18(4).

    Google Scholar 

  35. Zhang, X. (1987) “An Experimental and Computational Investigation of Supersonic Shear Layer Driven Single and Multiple Cavity Flow Fields,” Ph.D. Thesis, Churchill College, Cambridge, UK.

    Google Scholar 

  36. Hold, R., Brenneis, A., Eberle, A., Schwarz, V. and Siegert, R. (1999) “Numerical Simulation of Aeroacoustic Sound Generated by Generic Bodies Placed on a Plate: Part 1—Prediction of Aeroacoustic Sources,” AIAA Paper 99-1896.

    Google Scholar 

  37. Délery, J.M. (1983) “Experimental Investigation of Turbulence Properties in Transonic Shock-Wave/Boundary-Layer Interactions,” AIAA Journal, 21 pp. 180–185.

    Article  ADS  Google Scholar 

  38. Burrows, M.C. and Kurkov, A.P. (1973) “Analytical and Experimental Study of Supersonic Combustion of Hydrogen in a Vitiated Air Stream,” NASA TM X-2828.

    Google Scholar 

  39. Drummond, J.P., Rogers, R.C. and Hussaini, B. (1987) “A Numerical Model for Supersonic Reacting Mixing Layers,” Computer Methods in Applied Mechanics and Engineering, 64 39.

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Chakravarthy, S.R., Goldberg, U.C., Batten, P. (2002). Examples of Contemporary CFD Simulations. In: Drikakis, D., Geurts, B. (eds) Turbulent Flow Computation. Fluid Mechanics and Its Applications, vol 66. Springer, Dordrecht. https://doi.org/10.1007/0-306-48421-8_10

Download citation

  • DOI: https://doi.org/10.1007/0-306-48421-8_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0523-7

  • Online ISBN: 978-0-306-48421-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics