Advertisement

The vortex-in-cell method for the study of three-dimensional vortex structures

  • Henryk Kudela
  • Pawel Regucki
Part of the Fluid Mechanics and Its Applications book series (FMIA, volume 71)

Abstract

The vortex particle method for numerical simulation of the 3D vortex structure evolution was used. Validation of the method was tested for the study of a single vortex ring by comparing the computed translation velocity with the theoretical formula and for the leap-frogging phenomenon for two rings with the same circulation.

Keywords

Vortex Ring Vortex Method Fluid Vortex Vortex Particle Single Vortex Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Christiansen, J. P. 1973 Vortex method for flow simulation. J.Comput. Phys.13, 363–379.CrossRefzbMATHADSGoogle Scholar
  2. Cottet, G.-H. 2000 3D vortex methods: achievements and challenges. In Vortex Method, Selected Papers of the First International Conference on Vortex Methods, Kobe Japan 1999 (ed. K. Kamemoto & M. Tsutahara, Word Scientific (2000)), pp. 123–134.Google Scholar
  3. Gharakhani, A. & Ghoniem, A. F. 1997 Three-dimensional vortex simulation of time dependent incompressible internal viscous flows. J. Comput. Phys.134, 75–95.CrossRefMathSciNetzbMATHADSGoogle Scholar
  4. Knio, O. M. & Ghoniem, A. F. 1990 Numerical study of a three-dimensional vortex method. J. Comput. Phys.86, 75–106.CrossRefMathSciNetADSzbMATHGoogle Scholar
  5. Kudela, H. 1999 Application of the vortex-in-cell method for the simulation of two-dimensional viscous flow. Task Quarterly3, 343–360.Google Scholar
  6. Leonard, A. 1985 Computing three-dimensional incompressible flows with vortex elements. Annu. Rev. Fluid Mech.17, 523–559.CrossRefzbMATHADSGoogle Scholar
  7. Lim, T. I. & Nickels, T. B. 1995 Vortex rings. In Fluid Vortices (ed. S. I. Green, Kluwer Academic Publishers), pp. 95–153.Google Scholar
  8. Meiburg, E. 1995 Three-dimensional vortex dynamics simulations. In Fluid Vortices (ed. S. I. Green, Kluwer Academic Publishers), pp. 651–685.Google Scholar
  9. Ould Salihi, M. L. & Cottet, G.-H. & Hamraoui, M. El. 2000 Blending finite-difference and vortex methods for incompressible flow computations. SIAM J. Comput.22(5), 1655–1674.zbMATHGoogle Scholar
  10. Saffman, P. G. 1981 Vortex interactions and coherent structures in turbulence. In Transition and Turbulence (ed. R. E. Meyer, Academic Press), pp. 149–166.Google Scholar
  11. Saffman, P. G. 1992 Vortex dynamics, (ed. Cambridge University Press)Google Scholar
  12. Shariff, K. & Leonard, A. 1992 Vortex rings. Annu. Rev. Fluid Mechanics24, 235–279.MathSciNetADSCrossRefGoogle Scholar
  13. Winckelmans, G. S. & Leonard, A. 1993 Contributions to vortex particle methods for computation of three-dimensional incompressible unsteady flows. J. Comput. Phys.109, 247–273.CrossRefMathSciNetADSzbMATHGoogle Scholar
  14. Zawadzki, I. & Aref, H. 1991 Mixing during vortex ring collision. Phys. Fluids A3(5), 1405–1410.CrossRefADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Henryk Kudela
    • 1
  • Pawel Regucki
    • 1
  1. 1.Wroclaw University of TechnologyWroclawPoland

Personalised recommendations