Interactions between two close spheres in Stokes flow

  • Maria L. Ekiel-JeŻewska
  • Nicolas Lecoq
  • René Anthore
  • François Bostel
  • François Feuillebois
Conference paper
Part of the Fluid Mechanics and Its Applications book series (FMIA, volume 71)


We investigate if two close spheres in a fluid flow at low-Reynolds-number can touch each other and interact mechanically. We outline how this problem relates to microhydrodynamics of suspensions. We measure the translational and rotational motion of a sphere, which settles in a silicon oil onto another, fixed sphere of the same size. We use simultaneously a video system and a laser interferometer coupled with encoders. We calculate the motion, assuming that the particles come into contact and that the mechanical interactions superpose with the gravitational and hydrodynamic forces. The experiment confirms the model and determines its parameters.


Hydrodynamic Interaction Stoke Flow Laser Interferometer Friction Matrix Static Friction Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brady, J.F. & Bossis, G. 1988 Stokesian dynamics. Ann. Rev. Fluid Mech.20, 111–157.CrossRefADSGoogle Scholar
  2. Cichocki, B., Felderhof, B.U. & Schmitz, R. 1988 Hydrodynamic interactions between two spherical particles. PCH Physico Chem. Hydrodyn.10, 383–403.Google Scholar
  3. Cichocki, B., Felderhof, B.U., Hinsen, K., Wajnryb, E. & Blawzdziewicz, J. 1994 Friction and mobility of many spheres in Stokes flow. J. Chem. Phys.100, 3780–3790.CrossRefADSGoogle Scholar
  4. Cichocki, B., Ekiel-Jeżewska, M.L. & Wajnryb, E. 1999 Lubrication corrections for three-particle contribution to short-time self-diffusion coefficients in colloidal dispersions. J. Chem. Phys.111, 3265–3273.CrossRefADSGoogle Scholar
  5. Davis, R.H. 1992 Effects of surface roughness on a sphere sedimenting through a dilute suspension of neutrally buoyant spheres. Phys. Fluids A4, 2607–2619.zbMATHADSCrossRefGoogle Scholar
  6. Ekiel-Jeżewska, M.L., Feuillebois, F., Lecoq, N., Masmoudi, K., Anthore, R., Bostel, F. & Wajnryb, E. 1999 Hydrodynamic interactions between two spheres at contact. Phys. Rev. E59, 3182–3191.ADSCrossRefGoogle Scholar
  7. Felderhof, B.U. 1990 Hydrodynamics of suspensions. In Fundamental Problems in Statistical Mechanics VII (ed. H. van Beijeren), pp. 225–254. North-Holland.Google Scholar
  8. Jeffrey, D.J. & Onishi, Y. 1984 Calculation of the resistance and mobility functions for two unequal rigid spheres in low-Reynolds-number flow. J. Fluid Mech.139, 261–290.ADSzbMATHCrossRefGoogle Scholar
  9. Ladd, A.J.C. 1990 Hydrodynamic transport coefficients of random dispersions of hard spheres. J. Chem. Phys.93, 3484–3494.CrossRefADSGoogle Scholar
  10. Masmoudi, K., Lecoq, N., Anthore, R., Bostel, F. & Feuillebois, F. 2002 Accurate measurement of hydrodynamic interactions between a particle and walls. Experiments in Fluids32, 55–65.CrossRefADSGoogle Scholar
  11. Mo, G. & Sangani, A.S. 1994 A method for computing Stokes flow interactions among spherical objects and its application to suspensions of drops and porous particles. Phys. Fluids6, 1637–1652.CrossRefADSzbMATHGoogle Scholar
  12. Smart, J.R., Beimfohr, S. & Leighton, D.T. 1993 Measurement of the translational and rotational velocities of a noncolloidal sphere rolling down a smooth inclined plane at low Reynolds number. Phys. Fluids A5, 13–24.CrossRefADSGoogle Scholar
  13. Wajnryb, E. & Dahler, J.S. 1997 The Newtonian viscosity of a moderately dense suspension. In Adv. Chem. Phys., Vol. 102 (ed. I. Prigogine & S.A. Rice), pp. 193–313. Wiley.Google Scholar
  14. Wilson, H.J. & Davis, R.H. 2000 The viscosity of a dilute suspension of rough spheres. J. Fluid Mech.421, 339–367.CrossRefMathSciNetADSzbMATHGoogle Scholar
  15. Zeng, S., Kerns, E.T. & Davis, R.H. 1996 The nature of particle contacts in sedimentation. Phys. Fluids8, 1389–1396.CrossRefADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Maria L. Ekiel-JeŻewska
    • 1
  • Nicolas Lecoq
    • 2
  • René Anthore
    • 2
  • François Bostel
    • 2
  • François Feuillebois
    • 3
  1. 1.Institute of Fundamental Technological ResearchPolish Academy of SciencesWarsawPoland
  2. 2.Université de Rouen, UMR 6634 CNRSMont Saint Aignan CedexFrance
  3. 3.PMMH, École Supérieure de Physique et de Chimie IndustriellesParis Cedex 05France

Personalised recommendations