Advertisement

Discrete groups, symmetric flows and hydrodynamic blowup

  • Richard B. Pelz
Conference paper
Part of the Fluid Mechanics and Its Applications book series (FMIA, volume 71)

Abstract

Discrete group theory is applied to certain well-known flows with discrete symmetries. A flow is associated with particular discrete point or space group if flow components possess the same symmetries as the irreducible representations of the group. The flows examined are or have been considered candidates for finite-time blowup. The properties of the groups are related to the characteristics of the flows.

Keywords

Point Group Discrete Group Vortex Tube Blowup Solution Character Table 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beale, J. T., Kato, T., & Majda, A. 1985 Remarks on the breakdown of smooth solutions for 3-D Euler equations. Commun. Math. Phys.94 61–66.MathSciNetCrossRefADSGoogle Scholar
  2. Boratav, O. N. 1992 Ph.D Thesis, Rutgers University.Google Scholar
  3. Boratav, O. N. & Pelz, R. B. 1994 Direct numerical simulation of transition to turbulence from a high-symmetry initial condition. The Physics of Fluids6no. 8, 2757–2784.CrossRefADSzbMATHGoogle Scholar
  4. Boratav, O. N. & Pelz, R. B. 1995 On the Local Topology Evolution of a High-Symmetry Flow. The Physics of Fluids7,no. 7, 1712–1731.CrossRefADSzbMATHGoogle Scholar
  5. Boratav, O. N. & Pelz, R. B. 1995 Locally Isotropic Pressure Hessian in a High-Symmetry Flow. The Physics of Fluids7,no. 5, 895–897.CrossRefMathSciNetADSzbMATHGoogle Scholar
  6. Brachet, M. E., Meiron, D. I., Orszag, S. A., Nickel, B. G., Morf, R. H. & Frisch, U. 1983 Small-scale Structure of the Taylor-Green Vortex. J. Fluid. Mech.130 441–452.ADSCrossRefGoogle Scholar
  7. Brachet, M. E., Meneguzzi, M., Vincent, A., Politano, H., & Sulem, P. L. 1992 Numerical evidence of smooth self-similar dynamics and possibility of subsequent collapse for three-dimensional ideal flows. Phys. Fluids A412, 2845–2854.CrossRefADSzbMATHGoogle Scholar
  8. Caffarelli, L., Kohn, R. & Nirenberg, L. 1982 Partial regularity of suitable weak solutions of the Navier-Stokes equations. Commun. Pure Appl. Math.35 771–831.MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. Constantin, P. 1994 Geometric statistics in turbulence. SIAM Review36, 73–98.CrossRefMathSciNetzbMATHGoogle Scholar
  10. Constantin, P. 1995 Nonlinear inviscid incompressible dynamics. Physica D86, 212–219.CrossRefMathSciNetzbMATHGoogle Scholar
  11. Constantin, P. & Fefferman, C. 1993 Direction of Vorticity and the Problem of Global Regularity for the Navier-Stokes Equations. Indiana Univ. Math. J.42, 775.CrossRefMathSciNetzbMATHGoogle Scholar
  12. Constantin, P., Fefferman, C. & Majda, A. J. 1996 Geometric constraints on potentially singular solutions for the 3-D Euler equations. Commun. Part. Diff. Eqns.21, 559–571.MathSciNetzbMATHGoogle Scholar
  13. Greene, J. M. & Pelz, R. B. 2000 Stability of Postulated Self-Similar, Hydrodynamic Blowup Solutions. Physical Review E62, 7982–7986.CrossRefMathSciNetADSGoogle Scholar
  14. Kerr, R. M. 1993 Evidence for a singularity in the three-dimensional, incompressible Euler equations. Phys Fluids A5 1725–1746.CrossRefMathSciNetzbMATHADSGoogle Scholar
  15. Kerr, R. M. & Hussain, A.K.M.F. 1989 Simulation of vortex reconnection. Physica D37 474.CrossRefADSGoogle Scholar
  16. Kettle, S. F. A. 1985 Symmetry and Structure Wiley.Google Scholar
  17. Kida, S. 1985 Three-dimensional periodic flows with high-symmetry. J. Phys. Soc. Jpn.54, 2132–2140.ADSCrossRefGoogle Scholar
  18. Leray, J. 1934 Sur le mouvement d’un liquide visqueux emplissant l’space. Acta Math. 63, 193–248.zbMATHCrossRefMathSciNetGoogle Scholar
  19. Melander, M. & Hussain, A. K. M. F. 1988 Cut and connect of two antiparallel vortex tubes. Center for Turbulence Research Report S88, 257–286.Google Scholar
  20. Mirman, R. 1999 Point Groups, Space Groups, Crystals, Molecules World Scientific.Google Scholar
  21. Moffatt, H. K. 1978 Magnetic Field Generation in Electrically Conducting Fluids, Cambridge University Press.Google Scholar
  22. Moffatt, H. K. 2000 The interaction of skewed vortex pairs: a model for blow-up of the Navier-Stokes equations. J. Fluid Mech.409, 51–68.CrossRefMathSciNetzbMATHADSGoogle Scholar
  23. Morf, R. H., Orszag, S. A. & Frisch, U. 1980 Spontaneous Singularity in Three-Dimensional Inviscid, Incompressible Flow. Phys. Rev. Letts.44,no 9, 572–574.CrossRefMathSciNetADSGoogle Scholar
  24. Pelz, R. B. 1997 Locally self-similar, finite-time collapse in a high-symmetry vortex filament model. Physical Review E, 55, 1617–1620.CrossRefADSGoogle Scholar
  25. Pelz, R. B. 2001 Symmetry and the Hydrodynamic Blowup Problem. Journal of Fluid Mechanics, 444, 299–320.CrossRefMathSciNetzbMATHADSGoogle Scholar
  26. Pelz, R.B. 2002 (in press) A Candidate for Hydrodynamics Blowup: Octahedral, Vortical Flow. In Geometry and Topology of Fluid Flows, (ed. R. Ricca) NATO-ASI.Google Scholar
  27. Pelz, R. B. & Boratav, O. N. 1995 On a Possible Euler Singularity During Transition in a High-Symmetry Flow. In Small-Scale Structures in Three-Dimensional Hydro and Magneto Hydrodynamic Turbulence, (ed. M. Meneguzzi, A. Pouquet & P.L. Sulem), pp. 25–32. Springer.Google Scholar
  28. Pelz, R. B. & Gulak, Y. 1997 Evidence for a Real-Time Singularity in Hydrodynamics from Time Series Analysis. Physical Review Letters, Vol. 79,No. 25, 4998–5001.CrossRefADSGoogle Scholar
  29. Pelz, R. B., Gulak, Y., Greene, J. M. & Boratav, O. N. 1999 On the Finite-time Singularity Problem in Hydrodynamics. In Fundamental Problematic Issues in Turbulence, (ed. A. Gyr, W. Kinzelbach, A. Tsinober), pp. 33–40. Birkhäuser.Google Scholar
  30. Ponce, G. 1985 Remarks on a Paper by J.T. Beale, T. Kato and A. Majda. Commun. Math. Phys.98, 349–353.CrossRefMathSciNetzbMATHADSGoogle Scholar
  31. Pumir, A. & Siggia, E. D. 1990 Collapsing solutions to the 3-D Euler equations. Phys Fluids A2 220–240.CrossRefMathSciNetADSzbMATHGoogle Scholar
  32. Siggia, E. D. 1985 Collapse and amplification of a vortex filament. Phys. Fluids283, 794–805.CrossRefzbMATHADSGoogle Scholar
  33. Taylor, G. I. & Green, A. E. 1937 Mechanism of the Production of Small Eddies from Large Ones. Proc. Roy. Soc. A158 499–521.ADSCrossRefGoogle Scholar
  34. Vanderbilt, D. 2001 private communication.Google Scholar
  35. Waele, A. T. A. M. & Aarts, R. G. K. M. 1994 Route to Vortex Reconnection. Phys. Rev. Letts.72no. 4, 482–485.ADSCrossRefGoogle Scholar
  36. Wherrett, B. S. 1986 Group Theory for Atoms, Molecules and Solids Prentice Hall International.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Richard B. Pelz
    • 1
  1. 1.Department of Mechanical and Aerospace EngineeringRutgers UniversityPiscatawayUSA

Personalised recommendations