Advertisement

Effect of stretching on vortices with axial flow

  • Maurice Rossi
  • Ivan Delbende
  • Stéphane Le Dizès 
Conference paper
Part of the Fluid Mechanics and Its Applications book series (FMIA, volume 71)

Abstract

It is shown that a weak time-dependent stretching might rapidly destabilise a vortex, thus providing a mechanism for vortex bursts observed in turbulent flows. This study addresses the three-dimensional stability of a stretched viscous Batchelor vortex. In a fashion quite similar to Lundgren’s transformation, the strain field is almost eliminated from the linear equations that govern three-dimensional perturbations. Such transformed equations, which are reminiscent of those for the swirling jet instability, are then numerically solved in the simple case of a compression phase followed by a stretching phase. Simulations qualitatively demonstrate how strain and azimuthal vorticity cooperate to destabilise the vortex.

Keywords

Axial Flow Vortex Filament Swirl Number Rapid Distortion Theory Azimuthal Vorticity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abid, M., Andreotti, B., Douady, S. & Nore, C. 2002 Oscillating structures in a stretched-compressed vortex. J.Fluid Mech.450, 207–233.MathSciNetADSCrossRefzbMATHGoogle Scholar
  2. Cadot, O., Douady, S. & Couder, Y. 1995 Characterization of the low pressure filaments in three-dimensional turbulent shear flow. Phys. Fluids7(3), 630–646.CrossRefADSGoogle Scholar
  3. Delbende, I., Rossi. M. & Le dizès, S. 2002 Stretching effects on the three-dimensional stability of vortices with axial flow J. Fluid Mech.454, 419–442.MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. Gibbon, J.D., Fokas, A.S. & Doering, C.R. 1999 Dynamically stretched vortices as solution of the 3D Navier-Stokes equations. Physica D132, 497–510.CrossRefMathSciNetADSzbMATHGoogle Scholar
  5. Lessen, M., Singh, P.J. & Paillet, P. 1974 The stability of a trailing line vortex. Part 1. Inviscid theory. J. Fluid Mech.63, 753–763.ADSzbMATHCrossRefGoogle Scholar
  6. Lundgren, T.S. 1982 Strained spiral vortex model for turbulent fine structure. Phys. Fluids, 25(12), 2193–2203.CrossRefzbMATHADSGoogle Scholar
  7. Mayer, E.W. & Powell, K.G. 1992 Viscous and inviscid instabilities of a trailing line vortex, J. Fluid Mech.245, 91–114.MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. Verzicco, R. & Jiménez, J. 1999 On the survival of strong vortex filaments in ‘model’ turbulence. J.Fluid Mech.394, 261–279.CrossRefMathSciNetADSzbMATHGoogle Scholar
  9. Verzicco, R., Jiménez, J. & Orlandi, P. 1995 On steady columnar vortices under local compression. J. Fluid Mech.299, 367–388.MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. Vincent, A. & Meneguzzi, M. 1991 The spatial structure and statistical properties of homogeneous turbulence. J. Fluid Mech.225, 1–20.ADSzbMATHCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Maurice Rossi
    • 1
  • Ivan Delbende
    • 2
  • Stéphane Le Dizès 
    • 3
  1. 1.LMM, Université Paris VIParis Cedex 05France
  2. 2.LIMSIOrsay CedexFrance
  3. 3.IRPHEMarseille Cedex 13France

Personalised recommendations