Skip to main content

Vortex bi-layers and the emergence of vortex projectiles in compressible accelerated inhomogeneous flows (AIFs)

  • Conference paper
  • 594 Accesses

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 71))

Abstract

Vortex bi-layers and “Vortex Projectiles” (VPs) are the essential coherent structures which emerge in the shock accelerated inhomogeneous (Richtmyer-Meshkov) flows, in particular the light (s/f/s) planar curtain configuration. In our visiometric mode of working, we identify and quantify several vortex processes which emerge in 2D simulations during four time epochs. In particular: large positive and negative secondary circulations that arise from incompressible baroclinic processes; upstream and downstream moving VPs; and an intermediate stratified decaying turbulent sub-domain containing VPs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Blondin, J. M. & Hawley, J. 2001 Virginia Hydrodynamics Code. http://yonka.physics.ncsu.edu/pub/VH-1/index.html.

  • Bonazza, R., Brouillette, M., Goldstein, D., Haas, J.-F., Winckelmans, G. and Sturtevant, B. 1985 Bull. Am. Phys. Soc.30, 1742.

    Google Scholar 

  • Brouillette, M. 2002 The Richtmyer-Meshkov Instability. Ann. Rev. Fluid Mech.34, 445–468.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Colella, P. & Woodward, P. R. 1984 The Piecewise Parabolic Method (PPM) for Gas-Dynamical Simulations. J. Comp. Phys.54(1), 174–201.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Kotelnikov, A., Ray, J. and Zabusky, N. J. 2000 Vortex morphologies on reaccelerated interfaces: Visualization, quantification and modeling of one-and-two mode compressible and incompressible environments. Phys. Fluids, 12, 3245–3264.

    Article  MathSciNet  ADS  Google Scholar 

  • Kotelnikov, A., Gulak, Y. and Zabusky, N. J. 2000 Nonlinear evolution and vortex localization: Different phases of a single mode Richtmyer-Meshkov unstable interface. Accepted, subject to modifications J. Fluid Mech. (March 2002).

    Google Scholar 

  • Lamb, H. 1895 Hydrodynamics, 6th edition, Cambridge University Press, 1932.

    Google Scholar 

  • Overman II, E. A. & Zabusky, N. J. 1982 Coaxial, Scattering of Euler Equation Translating V-states via Contour Dynamics. J. Fluid Mech., 125, 187.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Ray, J., Samtaney, R. and Zabusky, N. J. 2000 Shock interactions with heavy gaseous elliptic cylinders: Two leeward-side shock competition modes and a heuristic model for interfacial circulation deposition at early times. Phys. Fluids, 12 707–716.

    Article  ADS  MATH  Google Scholar 

  • Rightley, P. M., Prestridge, K., Zoldi, C. A., Benjamin, R. F. and Vorobieff, P. 2000 Velocity field measurements of a shock-accelerated gas cylinder. The 53rd Annual Meeting of the American Physical Society’s Division of Fluid Dynamics (Meeting ID: DFD00), Session MF.001, Nov. 19–21, 2000. Washington, D. C.

    Google Scholar 

  • Samtaney, R. & Zabusky, N. J. 1994 Circulation Deposition on Shock Accelerated Planar and Curved Density-Stratified Interfaces: Models and Scaling Laws. J. Fluid Mech.269, 45–78.

    Article  ADS  Google Scholar 

  • Sturtevant, B. 1985 Caltech unpublished reports.

    Google Scholar 

  • Sturtevant, B. 1987 In Shock Tubes and Waves. Edited by H. Gronig (VCH, Berlin, 1987), p. 89.

    Google Scholar 

  • Yang, X., Zabusky, N. J., and Chern, I.-L. 1990 ‘Breakthrough’ via Dipolar-Vortex/Jet Formation in Shock-Accelerated Density-Stratified Layers. Phys. Fluids, A2(6), 892–895.

    ADS  Google Scholar 

  • Zabusky, N. J. & Zeng, S.-M. 1998 Shock cavity implosion morphologies and vortical projectile generation in axisymmetric shock-spherical F/S bubble interactions. J. Fluid Mech.362, 327–346.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Zabusky, N. J. & Zhang, S. 2002 Shock — planar curtain interactions in 2D: Emergence of vortex double layers, vortex projectiles and decaying stratified turbulence Phys. Fluids, 14(1), 419–422.

    Article  MathSciNet  ADS  Google Scholar 

  • Zabusky, N. J. 1999 Vortex paradigm for accelerated inhomogeneous flows: Visiometrics for the Rayleigh-Taylor and Richtmyer-Meshkov environments. Ann. Rev. Fluid Mech.31, 495–535.

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this paper

Cite this paper

Zabusky, N.J., Zhang, S. (2002). Vortex bi-layers and the emergence of vortex projectiles in compressible accelerated inhomogeneous flows (AIFs). In: Bajer, K., Moffatt, H.K. (eds) Tubes, Sheets and Singularities in Fluid Dynamics. Fluid Mechanics and Its Applications, vol 71. Springer, Dordrecht. https://doi.org/10.1007/0-306-48420-X_26

Download citation

  • DOI: https://doi.org/10.1007/0-306-48420-X_26

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0980-8

  • Online ISBN: 978-0-306-48420-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics