Vortex bi-layers and the emergence of vortex projectiles in compressible accelerated inhomogeneous flows (AIFs)

  • Norman J. Zabusky
  • Shuang Zhang
Conference paper
Part of the Fluid Mechanics and Its Applications book series (FMIA, volume 71)


Vortex bi-layers and “Vortex Projectiles” (VPs) are the essential coherent structures which emerge in the shock accelerated inhomogeneous (Richtmyer-Meshkov) flows, in particular the light (s/f/s) planar curtain configuration. In our visiometric mode of working, we identify and quantify several vortex processes which emerge in 2D simulations during four time epochs. In particular: large positive and negative secondary circulations that arise from incompressible baroclinic processes; upstream and downstream moving VPs; and an intermediate stratified decaying turbulent sub-domain containing VPs.


Vortex Ring Shock Tube Incident Shock Time Epoch Vortex Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blondin, J. M. & Hawley, J. 2001 Virginia Hydrodynamics Code.
  2. Bonazza, R., Brouillette, M., Goldstein, D., Haas, J.-F., Winckelmans, G. and Sturtevant, B. 1985 Bull. Am. Phys. Soc.30, 1742.Google Scholar
  3. Brouillette, M. 2002 The Richtmyer-Meshkov Instability. Ann. Rev. Fluid Mech.34, 445–468.CrossRefMathSciNetzbMATHADSGoogle Scholar
  4. Colella, P. & Woodward, P. R. 1984 The Piecewise Parabolic Method (PPM) for Gas-Dynamical Simulations. J. Comp. Phys.54(1), 174–201.MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. Kotelnikov, A., Ray, J. and Zabusky, N. J. 2000 Vortex morphologies on reaccelerated interfaces: Visualization, quantification and modeling of one-and-two mode compressible and incompressible environments. Phys. Fluids, 12, 3245–3264.CrossRefMathSciNetADSGoogle Scholar
  6. Kotelnikov, A., Gulak, Y. and Zabusky, N. J. 2000 Nonlinear evolution and vortex localization: Different phases of a single mode Richtmyer-Meshkov unstable interface. Accepted, subject to modifications J. Fluid Mech. (March 2002).Google Scholar
  7. Lamb, H. 1895 Hydrodynamics, 6th edition, Cambridge University Press, 1932.Google Scholar
  8. Overman II, E. A. & Zabusky, N. J. 1982 Coaxial, Scattering of Euler Equation Translating V-states via Contour Dynamics. J. Fluid Mech., 125, 187.MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. Ray, J., Samtaney, R. and Zabusky, N. J. 2000 Shock interactions with heavy gaseous elliptic cylinders: Two leeward-side shock competition modes and a heuristic model for interfacial circulation deposition at early times. Phys. Fluids, 12 707–716.CrossRefADSzbMATHGoogle Scholar
  10. Rightley, P. M., Prestridge, K., Zoldi, C. A., Benjamin, R. F. and Vorobieff, P. 2000 Velocity field measurements of a shock-accelerated gas cylinder. The 53rd Annual Meeting of the American Physical Society’s Division of Fluid Dynamics (Meeting ID: DFD00), Session MF.001, Nov. 19–21, 2000. Washington, D. C.Google Scholar
  11. Samtaney, R. & Zabusky, N. J. 1994 Circulation Deposition on Shock Accelerated Planar and Curved Density-Stratified Interfaces: Models and Scaling Laws. J. Fluid Mech.269, 45–78.ADSCrossRefGoogle Scholar
  12. Sturtevant, B. 1985 Caltech unpublished reports.Google Scholar
  13. Sturtevant, B. 1987 In Shock Tubes and Waves. Edited by H. Gronig (VCH, Berlin, 1987), p. 89.Google Scholar
  14. Yang, X., Zabusky, N. J., and Chern, I.-L. 1990 ‘Breakthrough’ via Dipolar-Vortex/Jet Formation in Shock-Accelerated Density-Stratified Layers. Phys. Fluids, A2(6), 892–895.ADSGoogle Scholar
  15. Zabusky, N. J. & Zeng, S.-M. 1998 Shock cavity implosion morphologies and vortical projectile generation in axisymmetric shock-spherical F/S bubble interactions. J. Fluid Mech.362, 327–346.CrossRefMathSciNetADSzbMATHGoogle Scholar
  16. Zabusky, N. J. & Zhang, S. 2002 Shock — planar curtain interactions in 2D: Emergence of vortex double layers, vortex projectiles and decaying stratified turbulence Phys. Fluids, 14(1), 419–422.CrossRefMathSciNetADSGoogle Scholar
  17. Zabusky, N. J. 1999 Vortex paradigm for accelerated inhomogeneous flows: Visiometrics for the Rayleigh-Taylor and Richtmyer-Meshkov environments. Ann. Rev. Fluid Mech.31, 495–535.CrossRefMathSciNetADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Norman J. Zabusky
    • 1
  • Shuang Zhang
    • 1
  1. 1.Laboratory of Visiometrics and Modelling, Dept. of Mechanical and Aerospace EngineeringRutgers UniversityPiscataway

Personalised recommendations