Advertisement

Low-pressure vortex analysis in turbulence: life, structure, and dynamical role of vortices

  • Shigeo Kida
  • Susumu Goto
  • Takafumi Makihara
Conference paper
Part of the Fluid Mechanics and Its Applications book series (FMIA, volume 71)

Abstract

The low-pressure vortex analysis is performed for the study of dynamical properties of tubular vortices in turbulence. An automatic tracking scheme of arbitrarily chosen vortices is developed which makes it easier to examine the history of individual vortices. The low-pressure vortices have typically two distinct regions of high vorticity, that is, the tubular central core and surrounding spiral arms. The vorticity in these two regions is perpendicular to each other. It is observed that both the length of fluid lines and the area of fluid surfaces increase, in average, exponentially in time with growth rates of 0.17 and 0.30 (Kolmogorov time) −1, respectively. The main contribution to these stretching comes from the velocity induced by vortices.

Keywords

Vortex Core Isotropic Turbulence Vortex Tube Azimuthal Velocity Large Reynolds Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Batchelor, G. K. (1952). Material-Element Deformation in Isotropic Turbulence. Proc. Roy. Soc. London A 213, 349–366.MathSciNetzbMATHADSCrossRefGoogle Scholar
  2. Chorin, A. J. (1982). The Evolution of a Turbulent Vortex. Commun. Math. Phys.83, 517–535.CrossRefMathSciNetzbMATHADSGoogle Scholar
  3. Kida, S. & Goto, S. (2002) Line statistics: Stretching rate of passive lines in turbulence. Phys. Fluids, 14, 352–361.CrossRefMathSciNetADSGoogle Scholar
  4. Girimaji, S. S. & Pope, S. B. (1990). Material-Element Deformation in Isotropic Turbulence. J. Fluid Mech.220, 427–458.ADSCrossRefGoogle Scholar
  5. Hosokawa, I. & Yamamoto, K. (1989). Fine Structure of a Directly Simulated Isotropic Turbulence., J. Phys. Soc. Japan, 58, 20–23.ADSCrossRefGoogle Scholar
  6. Huang, M.J. (1996) Correlations of Vorticity and Material Line Elements with Strain in Decaying Turbulence. Phys. Fluids, 8, 2203–2214.CrossRefADSGoogle Scholar
  7. Hunt, J.C.R., Wray, A.A. & Moin, P. (1988) Eddies, Streams, and Convergence Zones in Turbulent Flows. CTR Proc. of Summer Program 1988, pp. 193–208.Google Scholar
  8. Kawahara, G., Kida, S., Tanaka, M. & Yanase, S. 1997 Wrap, tilt and stretch of vorticity lines around a strong straight vortex tube in a simple shear flow. J. Fluid Mech.353, 115–162.CrossRefMathSciNetADSzbMATHGoogle Scholar
  9. Kida, S. (2000). Computational Analysis of Turbulence — Description by Low-Pressure Vortex. Proc. IV International Congress on Industrial and Applied Mathematics, Edinburgh 5–9 July 1999, Eds. J.M. Ball & J.C.R. Hunt. pp. 117–128.Google Scholar
  10. Kida, S. & Miura, H. (2000). Double Spirals around a Tubular Vortex in Turbulence. J. Phys. Soc. Japan, 69, 3466–3467.CrossRefADSGoogle Scholar
  11. Lundgren, T.S. (1982). Strained spiral vortex model for turbulent fine structure. Phys. Fluids, 25, 2193–2203.CrossRefzbMATHADSGoogle Scholar
  12. Miura, H. (2001). Private communication.Google Scholar
  13. Miura, H. & Kida, S. (1997) Identification of Tubular Vortices in Complex Flows. J. Phys. Soc. Japan, 66, 1331–1334.CrossRefzbMATHADSGoogle Scholar
  14. Moore, D.W. (1985). The Interaction of a Diffusing Line Vortex and Aligned Shear Flow. Proc. Roy. Soc. London A 399, 367–375.zbMATHADSCrossRefGoogle Scholar
  15. Porter, D.H., Pouquet, A. & Woodward, P.R. (1994) Kolmogorov-like spectra in decaying three-dimensional supersonic waves. Phys. Fluids, 6, 2133–2142.CrossRefADSzbMATHGoogle Scholar
  16. Siggia, E.D. (1981) Numerical Study of Small Scale Intermittency in Three-Dimensional Turbulence. J. Fluid Mech.107, 375–406.zbMATHADSCrossRefGoogle Scholar
  17. Tanaka, M. & Kida, S. (1993). Characterization of vortex tubes and sheets. Phys. Fluids A 4, 2079–2082.ADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Shigeo Kida
    • 1
  • Susumu Goto
    • 1
  • Takafumi Makihara
    • 1
  1. 1.Theory and Computer Simulation CenterNational Institute for Fusion ScienceTokiJapan

Personalised recommendations